cf472D Design Tutorial: Inverse the Problem
2 seconds
256 megabytes
standard input
standard output
There is an easy way to obtain a new task from an old one called "Inverse the problem": we give an output of the original task, and ask to generate an input, such that solution to the original problem will produce the output we provided. The hard task of Topcoder Open 2014 Round 2C, InverseRMQ, is a good example.
Now let's create a task this way. We will use the task: you are given a tree, please calculate the distance between any pair of its nodes. Yes, it is very easy, but the inverse version is a bit harder: you are given an n × n distance matrix. Determine if it is the distance matrix of a weighted tree (all weights must be positive integers).
The first line contains an integer n (1 ≤ n ≤ 2000) — the number of nodes in that graph.
Then next n lines each contains n integers di, j (0 ≤ di, j ≤ 109) — the distance between node i and node j.
If there exists such a tree, output "YES", otherwise output "NO".
3
0 2 7
2 0 9
7 9 0
YES
3
1 2 7
2 0 9
7 9 0
NO
3
0 2 2
7 0 9
7 9 0
NO
3
0 1 1
1 0 1
1 1 0
NO
2
0 0
0 0
NO
In the first example, the required tree exists. It has one edge between nodes 1 and 2 with weight 2, another edge between nodes 1 and 3 with weight 7.
In the second example, it is impossible because d1, 1 should be 0, but it is 1.
In the third example, it is impossible because d1, 2 should equal d2, 1.
我对于暴力出奇迹又有了更深的理解……
题意是给你一个dist[i][j]的邻接矩阵,判断这是不是一棵树。
想法是先假设这就是棵树,用最小生成树直接算出应有的n-1条边,然后暴力求出在只有这n-1条边的情况下的dist和原数组比较
当然前面还要预处理排除一堆不合法答案
hzwer:为什么要做最小生成树呢?因为首先距离当前点x最近的点y肯定是有边直接连接的,因为(反证法)假设有z使得xz和yz分别连接,则dis[x][z]+dis[y][z]<=dis[x][y],所以应该有dis[x][z]<dis[x][y],与已知条件dist[x][y]最小不符
所以我们要优先考虑边权小的边,所以直接最小生成树
这题n=2000就是400w的边,再加点处理也有200w边,明显稠密图,应该用Prim,居然Kruskal能过……服了
贴代码……
以下Kruskal版
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<deque>
#include<set>
#include<map>
#include<ctime>
#define LL long long
#define inf 2147483647
#define pa pair<int,int>
#define N 2100
using namespace std;
struct bian{
int x,y,z;
}b[2000010];
bool operator < (const bian &a,const bian &b)
{
return a.z<b.z;
}
struct edge{
int to,next,v;
}e[10*N];int head[N];
LL n,cnt,tot;
LL a[N][N];
int fa[N];
int top,zhan[N];bool vis[N];
LL dist[N][N];
inline int getfa(int x)
{return fa[x]==x?x:fa[x]=getfa(fa[x]);}
inline void ins(int u,int v,int w)
{
e[++cnt].to=v;
e[cnt].next=head[u];
e[cnt].v=w;
head[u]=cnt;
}
inline void insert(int u,int v,int w)
{
ins(u,v,w);
ins(v,u,w);
}
inline LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
inline void init()
{
n=read();
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
a[i][j]=read();
}
inline bool pre_judge()
{
for (int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
if (i==j&&a[i][i]!=0)return 0;
if (i!=j&&a[i][j]==0)return 0;
if (a[i][j]!=a[j][i])return 0;
}
return 1;
}
inline void Kruskal()
{
for (int i=1;i<=n;i++)fa[i]=i;
for (int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if (i<j)
{
b[++tot].x=i;
b[tot].y=j;
b[tot].z=a[i][j];
}
sort(b+1,b+tot+1);
int piece=n;
for (int i=1;i<=tot;i++)
{
int fx=getfa(b[i].x);
int fy=getfa(b[i].y);
if (fx==fy)continue;
piece--;
fa[fx]=fy;
insert(b[i].x,b[i].y,b[i].z);
if (piece==1)return;
}
}
inline void dfs(int cur)
{
for (int i=head[cur];i;i=e[i].next)
{
if (vis[e[i].to])continue;
for (int j=1;j<=top;j++)
{
dist[e[i].to][zhan[j]]=dist[zhan[j]][e[i].to]=dist[zhan[j]][cur]+e[i].v;
}
zhan[++top]=e[i].to;
vis[e[i].to]=1;
dfs(e[i].to);
}
}
int main()
{
init();
if (!pre_judge())
{
printf("NO");
return 0;
}
Kruskal();
zhan[1]=1;top=1;vis[1]=1;
dfs(1);
for (int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(a[i][j]!=dist[i][j])
{
printf("NO");
return 0;
}
printf("YES");
return 0;
}
以下Prim版(第一次写,有点锉,神犇别D我)
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<deque>
#include<set>
#include<map>
#include<ctime>
#define LL long long
#define inf 2147483647
#define pa pair<int,int>
#define N 2100
using namespace std;
struct edge{
int to,next,v;
}e[10*N];int head[N];
LL n,cnt;
LL a[N][N];//读入的距离
bool inset[N];//是否在MST集合中
pa dis[N]; //二元组dist[k]=(i,j)表示从所有在集合中的点到k的最短边是从j到k,权为=i
int top,zhan[N];bool vis[N];//MST之后处理dist的dfs用
LL dist[N][N];//最后算出来的dist
inline void ins(int u,int v,int w)
{
e[++cnt].to=v;
e[cnt].next=head[u];
e[cnt].v=w;
head[u]=cnt;
}
inline void insert(int u,int v,int w)
{
ins(u,v,w);
ins(v,u,w);
}
inline LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
inline bool pre_judge()
{
for (int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
if (i==j&&a[i][i]!=0)return 0;
if (i!=j&&a[i][j]==0)return 0;
if (a[i][j]!=a[j][i])return 0;
}
return 1;
}
inline void init()
{
n=read();
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
a[i][j]=read();
}
inline void prim()
{
int cur=1;inset[1]=1;
for (int i=2;i<=n;i++)
{
dis[i].first=a[1][i];
dis[i].second=1;
}
for (int i=1;i<n;i++)
{
LL mn=inf;
int from=0;
for (int j=1;j<=n;j++)
if (!inset[j]&&dis[j].first<mn)
{
mn=dis[j].first;
from=dis[j].second;
cur=j;
}
insert(from,cur,mn);
inset[cur]=1;
for (int j=1;j<=n;j++)
if (!inset[j]&&a[cur][j]<dis[j].first)
{
dis[j].first=a[cur][j];
dis[j].second=cur;
}
}
}
inline void dfs(int cur)
{
for (int i=head[cur];i;i=e[i].next)
{
if (vis[e[i].to])continue;
for (int j=1;j<=top;j++)
{
dist[e[i].to][zhan[j]]=dist[zhan[j]][e[i].to]=dist[zhan[j]][cur]+e[i].v;
}
zhan[++top]=e[i].to;
vis[e[i].to]=1;
dfs(e[i].to);
}
}
int main()
{
init();
if (!pre_judge())
{
printf("NO");
return 0;
}
prim();
zhan[1]=1;top=1;vis[1]=1;
dfs(1);
for (int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(a[i][j]!=dist[i][j])
{
printf("NO");
return 0;
}
printf("YES\n");
return 0;
}
cf472D Design Tutorial: Inverse the Problem的更多相关文章
- D. Design Tutorial: Inverse the Problem 解析含快速解法(MST、LCA、思維)
Codeforce 472D Design Tutorial: Inverse the Problem 解析含快速解法(MST.LCA.思維) 今天我們來看看CF472D 題目連結 題目 給你一個\( ...
- Codeforces #270 D. Design Tutorial: Inverse the Problem
http://codeforces.com/contest/472/problem/D D. Design Tutorial: Inverse the Problem time limit per t ...
- Design Tutorial: Inverse the Problem
Codeforces Round #270 D:http://codeforces.com/contest/472/problem/D 题意:给以一张图,用邻接矩阵表示,现在问你这张图能不能够是一棵树 ...
- codeforces D. Design Tutorial: Inverse the Problem
题意:给定一个矩阵,表示每两个节点之间的权值距离,问是否可以对应生成一棵树, 使得这棵树中的任意两点之间的距离和矩阵中的对应两点的距离相等! 思路:我们将给定的矩阵看成是一个图,a 到 b会有多条路径 ...
- Codeforces Round #270 D Design Tutorial: Inverse the Problem --MST + DFS
题意:给出一个距离矩阵,问是不是一颗正确的带权树. 解法:先按找距离矩阵建一颗最小生成树,因为给出的距离都是最短的点间距离,然后再对每个点跑dfs得出应该的dis[][],再对比dis和原来的mp是否 ...
- 【CF】270D Design Tutorial: Inverse the Problem
题意异常的简单.就是给定一个邻接矩阵,让你判定是否为树.算法1:O(n^3).思路就是找到树边,原理是LCA.判断树边的数目是否为n-1.39-th个数据T了,自己测试2000跑到4s.算法2:O(n ...
- cf472C Design Tutorial: Make It Nondeterministic
C. Design Tutorial: Make It Nondeterministic time limit per test 2 seconds memory limit per test 256 ...
- cf472B Design Tutorial: Learn from Life
B. Design Tutorial: Learn from Life time limit per test 1 second memory limit per test 256 megabytes ...
- cf472A Design Tutorial: Learn from Math
A. Design Tutorial: Learn from Math time limit per test 1 second memory limit per test 256 megabytes ...
随机推荐
- Java Fuck Bignumber
为了熟悉java , 开一套poj大数处理的题来写. ------------------------------------------------------------------- A: (1 ...
- HDU 4287 (13.08.17)
Problem Description We all use cell phone today. And we must be familiar with the intelligent Englis ...
- 【SVN Working copy is too old (format 10, created by Subversion 1.6)】解决方式
SVN同步或者提交的时候出现类似错误信息: The working copy needs to be upgraded svn: Working copy 'D:\adt-bundle-windows ...
- Android应用程序框架层和系统运行库层日志系统源代码分析
文章转载至CSDN社区罗升阳的安卓之旅,原文地址:http://blog.csdn.net/luoshengyang/article/details/6598703 在开发Android应用程序时,少 ...
- UML学习-活动图创建
活动图(Activity Diagram)可以实现对系统动态行为的建模,主要是将用例细化,即用例内部的细节可以以活动图的方式描述.活动图描述活动的顺序,主要表活动之间的控制流,是内部处理驱动的流程,在 ...
- Linux 与 unix shell编程指南——学习笔记
第一章 文件安全与权限 文件访问方式:读,写,执行. 针对用户:文件属主,同组用户,其它用户. 文件权限位最前面的字符代表文件类型,常用的如 d 目录:l 符号链 ...
- [Python][MachineLeaning]Python Scikit-learn学习笔记1-Datasets&Estimators
Scikit-learn官网:http://scikit-learn.org/stable/index.html Datasets 标准的数据集格式为一组多维特征向量组成的集合.数据集的标准形状(sh ...
- IOS自适应库---- Masonry的使用
Masonry是一个轻量级的布局框架,拥有自己的描述语法,采用更优雅的链式语法封装自动布局,简洁明了并具有高可读性,而且同时支持 iOS 和 Max OS X.Masonry是一个用代码写iOS或OS ...
- CSS 设计彻底研究(一)(X)HTML与CSS核心基础
第1章 (X)HTML与CSS核心基础 这一章重点介绍了4个方面的问题.先介绍了 HTML和XHTML的发展历程以及需要注意的问题,然后介绍了如何将CSS引入HTML,接着讲解了CSS的各种选择器,及 ...
- QSS 样式表 (一)
在开发应用程序时,往往对界面的美观有一定的要求.Qt 引入了 QSS 机制,使得界面的美化工作变的轻轻松松.嗯,QSS听着有点耳熟.是的,QSS的语法和CSS类似.在此做些总结. 先来看一个简单的例子 ...