cf472D Design Tutorial: Inverse the Problem
2 seconds
256 megabytes
standard input
standard output
There is an easy way to obtain a new task from an old one called "Inverse the problem": we give an output of the original task, and ask to generate an input, such that solution to the original problem will produce the output we provided. The hard task of Topcoder Open 2014 Round 2C, InverseRMQ, is a good example.
Now let's create a task this way. We will use the task: you are given a tree, please calculate the distance between any pair of its nodes. Yes, it is very easy, but the inverse version is a bit harder: you are given an n × n distance matrix. Determine if it is the distance matrix of a weighted tree (all weights must be positive integers).
The first line contains an integer n (1 ≤ n ≤ 2000) — the number of nodes in that graph.
Then next n lines each contains n integers di, j (0 ≤ di, j ≤ 109) — the distance between node i and node j.
If there exists such a tree, output "YES", otherwise output "NO".
3
0 2 7
2 0 9
7 9 0
YES
3
1 2 7
2 0 9
7 9 0
NO
3
0 2 2
7 0 9
7 9 0
NO
3
0 1 1
1 0 1
1 1 0
NO
2
0 0
0 0
NO
In the first example, the required tree exists. It has one edge between nodes 1 and 2 with weight 2, another edge between nodes 1 and 3 with weight 7.
In the second example, it is impossible because d1, 1 should be 0, but it is 1.
In the third example, it is impossible because d1, 2 should equal d2, 1.
我对于暴力出奇迹又有了更深的理解……
题意是给你一个dist[i][j]的邻接矩阵,判断这是不是一棵树。
想法是先假设这就是棵树,用最小生成树直接算出应有的n-1条边,然后暴力求出在只有这n-1条边的情况下的dist和原数组比较
当然前面还要预处理排除一堆不合法答案
hzwer:为什么要做最小生成树呢?因为首先距离当前点x最近的点y肯定是有边直接连接的,因为(反证法)假设有z使得xz和yz分别连接,则dis[x][z]+dis[y][z]<=dis[x][y],所以应该有dis[x][z]<dis[x][y],与已知条件dist[x][y]最小不符
所以我们要优先考虑边权小的边,所以直接最小生成树
这题n=2000就是400w的边,再加点处理也有200w边,明显稠密图,应该用Prim,居然Kruskal能过……服了
贴代码……
以下Kruskal版
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<deque>
#include<set>
#include<map>
#include<ctime>
#define LL long long
#define inf 2147483647
#define pa pair<int,int>
#define N 2100
using namespace std;
struct bian{
int x,y,z;
}b[2000010];
bool operator < (const bian &a,const bian &b)
{
return a.z<b.z;
}
struct edge{
int to,next,v;
}e[10*N];int head[N];
LL n,cnt,tot;
LL a[N][N];
int fa[N];
int top,zhan[N];bool vis[N];
LL dist[N][N];
inline int getfa(int x)
{return fa[x]==x?x:fa[x]=getfa(fa[x]);}
inline void ins(int u,int v,int w)
{
e[++cnt].to=v;
e[cnt].next=head[u];
e[cnt].v=w;
head[u]=cnt;
}
inline void insert(int u,int v,int w)
{
ins(u,v,w);
ins(v,u,w);
}
inline LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
inline void init()
{
n=read();
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
a[i][j]=read();
}
inline bool pre_judge()
{
for (int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
if (i==j&&a[i][i]!=0)return 0;
if (i!=j&&a[i][j]==0)return 0;
if (a[i][j]!=a[j][i])return 0;
}
return 1;
}
inline void Kruskal()
{
for (int i=1;i<=n;i++)fa[i]=i;
for (int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if (i<j)
{
b[++tot].x=i;
b[tot].y=j;
b[tot].z=a[i][j];
}
sort(b+1,b+tot+1);
int piece=n;
for (int i=1;i<=tot;i++)
{
int fx=getfa(b[i].x);
int fy=getfa(b[i].y);
if (fx==fy)continue;
piece--;
fa[fx]=fy;
insert(b[i].x,b[i].y,b[i].z);
if (piece==1)return;
}
}
inline void dfs(int cur)
{
for (int i=head[cur];i;i=e[i].next)
{
if (vis[e[i].to])continue;
for (int j=1;j<=top;j++)
{
dist[e[i].to][zhan[j]]=dist[zhan[j]][e[i].to]=dist[zhan[j]][cur]+e[i].v;
}
zhan[++top]=e[i].to;
vis[e[i].to]=1;
dfs(e[i].to);
}
}
int main()
{
init();
if (!pre_judge())
{
printf("NO");
return 0;
}
Kruskal();
zhan[1]=1;top=1;vis[1]=1;
dfs(1);
for (int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(a[i][j]!=dist[i][j])
{
printf("NO");
return 0;
}
printf("YES");
return 0;
}
以下Prim版(第一次写,有点锉,神犇别D我)
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<deque>
#include<set>
#include<map>
#include<ctime>
#define LL long long
#define inf 2147483647
#define pa pair<int,int>
#define N 2100
using namespace std;
struct edge{
int to,next,v;
}e[10*N];int head[N];
LL n,cnt;
LL a[N][N];//读入的距离
bool inset[N];//是否在MST集合中
pa dis[N]; //二元组dist[k]=(i,j)表示从所有在集合中的点到k的最短边是从j到k,权为=i
int top,zhan[N];bool vis[N];//MST之后处理dist的dfs用
LL dist[N][N];//最后算出来的dist
inline void ins(int u,int v,int w)
{
e[++cnt].to=v;
e[cnt].next=head[u];
e[cnt].v=w;
head[u]=cnt;
}
inline void insert(int u,int v,int w)
{
ins(u,v,w);
ins(v,u,w);
}
inline LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
inline bool pre_judge()
{
for (int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
if (i==j&&a[i][i]!=0)return 0;
if (i!=j&&a[i][j]==0)return 0;
if (a[i][j]!=a[j][i])return 0;
}
return 1;
}
inline void init()
{
n=read();
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
a[i][j]=read();
}
inline void prim()
{
int cur=1;inset[1]=1;
for (int i=2;i<=n;i++)
{
dis[i].first=a[1][i];
dis[i].second=1;
}
for (int i=1;i<n;i++)
{
LL mn=inf;
int from=0;
for (int j=1;j<=n;j++)
if (!inset[j]&&dis[j].first<mn)
{
mn=dis[j].first;
from=dis[j].second;
cur=j;
}
insert(from,cur,mn);
inset[cur]=1;
for (int j=1;j<=n;j++)
if (!inset[j]&&a[cur][j]<dis[j].first)
{
dis[j].first=a[cur][j];
dis[j].second=cur;
}
}
}
inline void dfs(int cur)
{
for (int i=head[cur];i;i=e[i].next)
{
if (vis[e[i].to])continue;
for (int j=1;j<=top;j++)
{
dist[e[i].to][zhan[j]]=dist[zhan[j]][e[i].to]=dist[zhan[j]][cur]+e[i].v;
}
zhan[++top]=e[i].to;
vis[e[i].to]=1;
dfs(e[i].to);
}
}
int main()
{
init();
if (!pre_judge())
{
printf("NO");
return 0;
}
prim();
zhan[1]=1;top=1;vis[1]=1;
dfs(1);
for (int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(a[i][j]!=dist[i][j])
{
printf("NO");
return 0;
}
printf("YES\n");
return 0;
}
cf472D Design Tutorial: Inverse the Problem的更多相关文章
- D. Design Tutorial: Inverse the Problem 解析含快速解法(MST、LCA、思維)
Codeforce 472D Design Tutorial: Inverse the Problem 解析含快速解法(MST.LCA.思維) 今天我們來看看CF472D 題目連結 題目 給你一個\( ...
- Codeforces #270 D. Design Tutorial: Inverse the Problem
http://codeforces.com/contest/472/problem/D D. Design Tutorial: Inverse the Problem time limit per t ...
- Design Tutorial: Inverse the Problem
Codeforces Round #270 D:http://codeforces.com/contest/472/problem/D 题意:给以一张图,用邻接矩阵表示,现在问你这张图能不能够是一棵树 ...
- codeforces D. Design Tutorial: Inverse the Problem
题意:给定一个矩阵,表示每两个节点之间的权值距离,问是否可以对应生成一棵树, 使得这棵树中的任意两点之间的距离和矩阵中的对应两点的距离相等! 思路:我们将给定的矩阵看成是一个图,a 到 b会有多条路径 ...
- Codeforces Round #270 D Design Tutorial: Inverse the Problem --MST + DFS
题意:给出一个距离矩阵,问是不是一颗正确的带权树. 解法:先按找距离矩阵建一颗最小生成树,因为给出的距离都是最短的点间距离,然后再对每个点跑dfs得出应该的dis[][],再对比dis和原来的mp是否 ...
- 【CF】270D Design Tutorial: Inverse the Problem
题意异常的简单.就是给定一个邻接矩阵,让你判定是否为树.算法1:O(n^3).思路就是找到树边,原理是LCA.判断树边的数目是否为n-1.39-th个数据T了,自己测试2000跑到4s.算法2:O(n ...
- cf472C Design Tutorial: Make It Nondeterministic
C. Design Tutorial: Make It Nondeterministic time limit per test 2 seconds memory limit per test 256 ...
- cf472B Design Tutorial: Learn from Life
B. Design Tutorial: Learn from Life time limit per test 1 second memory limit per test 256 megabytes ...
- cf472A Design Tutorial: Learn from Math
A. Design Tutorial: Learn from Math time limit per test 1 second memory limit per test 256 megabytes ...
随机推荐
- Mac OS X Mavericks使用手册
基本信息 作者: 施威铭研究室 出版社:清华大学出版社 ISBN:9787302386018 上架时间:2014-12-30 出版日期:2015 年1月 开本:16 版次:1-1 所属分类: 计算机 ...
- 初识lucene
lucene的介绍网上有好多,再写一遍可能有点多余了. 使用lucene之前,有一系列的疑问 为什么lucene就比数据库快? 倒排索引是什么,他是怎么做到的 lucene的数据结构是什么样的,cpu ...
- HDU1841——KMP算法
这个题..需要对KMP的模板理解的比较透彻,以前我也只是会套模板..后来才知道..之会套模板是不行的..如果不能把握模板的每一个细节`,至少能搞清楚模板的每一个模块大体是什么意思.. 题意是给出两个串 ...
- error Infos
- 虚拟机环境中安装ubuntu下的mysql-cluster7.3.2(单点服务器)
部署环境: 系统:ubuntu-12.04.2 LTS -server-i386.iso Cluster:mysql-cluster-gpl-7.3.2-linux-glibc23-i686.ta ...
- C++: int和string相互转换
假设在一个C++的程序中常常会用到int和string之间的互换.个人建议能够写成一个函数,下次用的时候直接调用就可以. #include <iostream> #include < ...
- Android.mk具体解释
概述 Android.mk文件用来向编译系统描写叙述怎样编译你的源码.更确切地说,该文件事实上就是一个小型的Makefile.由于该文件会被NDK的编译工具解析多次,因此应该尽量降低源码中声明 ...
- C基础知识小总结(十)
"如有不正确之处,请指出,谢谢" --Mood <指针和函数> 指针函数 函数指针 <最基本的使用函数指针> ...
- Java中的编码格式
Java中的编码 gbk编码 中文占用2个字节,英文占1个字节; utf-8编码 中文占用3个字节.,英文占用1个字节; Java是双字节编码 (utf-16be) utf -16be 中文占2个字节 ...
- 数据库的四种语言(DDL、DML、DCL、TCL)
1.DDL (Data Definition Language )数据库定义语言 statements are used to define the database structure or sch ...