BZOJ2460:[BJWC2011]元素(贪心,线性基)
Description
相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术。那时人们就认识到,一个法杖的法力取决于使用的矿石。
一般地,矿石越多则法力越强,但物极必反:有时,人们为了获取更强的法力而使用了很多矿石,却在炼制过程中发现魔法矿石全部消失了,从而无法炼制出法杖,这个现象被称为“魔法抵消” 。特别地,如果在炼制过程中使用超过一块同一种矿石,那么一定会发生“魔法抵消”。后来,随着人们认知水平的提高,这个现象得到了很好的解释。经过了大量的实验后,著名法师 Dmitri 发现:如果给现在发现的每一种矿石进行合理的编号(编号为正整数,称为该矿石的元素序号),那么,一个矿石组合会产生“魔法抵消”当且仅当存在一个非空子集,那些矿石的元素序号按位异或起来为零。(如果你不清楚什么是异或,请参见下一页的名词解释。 )
例如,使用两个同样的矿石必将发生“魔法抵消”,因为这两种矿石的元素序号相同,异或起来为零。并且人们有了测定魔力的有效途径,已经知道了:合成出来的法杖的魔力等于每一种矿石的法力之和。人们已经测定了现今发现的所有矿石的法力值,并且通过实验推算出每一种矿石的元素序号。
现在,给定你以上的矿石信息,请你来计算一下当时可以炼制出的法杖最多有多大的魔力。
Input
第一行包含一个正整数N,表示矿石的种类数。
接下来 N行,每行两个正整数Numberi 和 Magici,表示这种矿石的元素序号和魔力值。
Output
仅包一行,一个整数:最大的魔力值
Sample Input
1 10
2 20
3 30
Sample Output
HINT
由于有“魔法抵消”这一事实,每一种矿石最多使用一块。
如果使用全部三种矿石,由于三者的元素序号异或起来:1 xor 2 xor 3 = 0 ,
则会发生魔法抵消,得不到法杖。
可以发现,最佳方案是选择后两种矿石,法力为 20+30=50。
对于全部的数据:N ≤ 1000,Numberi ≤ 10^18,Magici ≤ 10^4。
Solution
先把二元组按魔力值从大到小排序,然后依次往线性基里插入序号,如果插入成功的话将把这个魔法值统计到答案里。
贪心的策略为什么是对的……感性证明一下如果一个小的数没法被插入,那么就说明它和之前的冲突了,肯定得把之前的更大的取出来一些才能让这个更小的插入进去,这显然是不优的。
Code
#include<iostream>
#include<cstdio>
#include<algorithm>
#define N (1009)
#define LL long long
using namespace std; LL n,x,y,ans,d[N];
pair<LL,LL>p[N]; bool Insert(LL x)
{
for (int i=; i>=; --i)
if (x&(1ll<<i))
{
if (!d[i]) {d[i]=x; break;}
x^=d[i];
}
return x>;
} int main()
{
scanf("%lld",&n);
for (int i=; i<=n; ++i)
{
scanf("%lld%lld",&x,&y);
p[i]=make_pair(y,x);
}
sort(p+,p+n+);
for (int i=n; i>=; --i)
if (Insert(p[i].second))
ans+=p[i].first;
printf("%lld\n",ans);
}
BZOJ2460:[BJWC2011]元素(贪心,线性基)的更多相关文章
- BZOJ2460 Beijing2011元素(线性基+贪心)
按价值从大到小考虑每个元素,维护一个线性基,如果向其中加入该元素的编号仍然构成线性基,则将其加入. 不会证明.当做线性基的一个性质吧. #include<iostream> #includ ...
- [BeiJing2011]元素[贪心+线性基]
2460: [BeiJing2011]元素 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 1245 Solved: 652[Submit][Stat ...
- BZOJ2460 [BeiJing2011]元素 【线性基】
2460: [BeiJing2011]元素 Time Limit: 20 Sec Memory Limit: 128 MB Submit: 1675 Solved: 869 [Submit][St ...
- 【题解】 bzoj2460: [BeiJing2011]元素 (线性基)
bzoj2460,戳我戳我 Solution: 线性基板子,没啥好说的,注意long long 就好了 Code: //It is coded by Ning_Mew on 5.29 #include ...
- BZOJ 2460 元素(贪心+线性基)
显然线性基可以满足题目中给出的条件.关键是如何使得魔力最大. 贪心策略是按魔力排序,将编号依次加入线性基,一个数如果和之前的一些数异或和为0就跳过他. 因为如果要把这个数放进去,那就要把之前的某个数拿 ...
- 洛谷P4570 [BJWC2011]元素(线性基)
传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 考虑贪心 将所有的矿石按价值从大到小排序 如果一块矿石不会和之前的编号异或为0就加入 这个只要判一下它能不能加进线性基里就可以了 据说这个贪心的证明 ...
- BZOJ_2460_[BeiJing2011]元素_线性基
BZOJ_2460_[BeiJing2011]元素_线性基 Description 相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔 法矿石炼制法杖的技术.那时人们就认识 ...
- bzoj2460元素(线性基,贪心)
题目大意: 给定\(n\)个二元组\((a,b)\),求一个最大的\(\sum b\)的集合,满足这个集合的任意子集的\(a\)的\(xor\)值不为0 这道题需要一个线性基的性质: 线性基的任何非空 ...
- BZOJ - 2460 :元素 (贪心&线性基)
相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术.那时人们就认识到,一个法杖的法力取决于使用的矿石.一般地,矿石越多则法力越强,但物极必反:有时,人们 ...
随机推荐
- WebForm 【简单控件】【表单元素】
一.HTML 表单元素复习 (1)文本类 文本框:<input type="text" name="" id="" value=&qu ...
- c# 导出text 文本文件
/// <summary> /// 机构代码信息 /// </summary> public static void ExportT_XQJBQK_SLGAJGDM(DataT ...
- 放苹果(poj1664递归)
ti放苹果 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 24392 Accepted: 15513 Descripti ...
- 2.Observer Pattern(观察者模式)
Observer Pattern(观察者模式)定义: 在对象之间定义一对多的依赖,这样一来,当一个对象改变状态,依赖它的对象都会收到通知,并自动更新. 干说定义肯定没有举例理解的透彻.想到Observ ...
- call,apply,bind
var student={ name:"马云", say:function(){ console.log(this.name); } } var f=student.say; f. ...
- SpringMVC+Spring+MyBatis 整合与图片上传简单示例
一.思路: (一) Dao层: 1. SqlMapConfig.xml,空文件即可.需要文件头.2. applicationContext_dao.xml. a) 数据库连接池b) SqlSessio ...
- LeetCode DB : Delete Duplicate Emails
Write a SQL query to delete all duplicate email entries in a table named Person, keeping only unique ...
- Dynamics 365Online 使用adal.js注册和配置SimpleSPA应用程序
本篇是基于dynamics 365online撰写,本文中使用的365online及azure均为试用版,因为online在国内还没落地,所以我申请的是新加坡版,online的申请方式可见我之前的博文 ...
- 《ECMAScript6标准入门》第三版--读书笔记
2015年6月,ECMAScript 6正式通过,成为国际标准.尽管在目前的工作中还没有使用ES6,但是每项新技术出来总是忍不住想尝尝鲜,想知道ES6能为前端开发带来哪些变化?对自己的工作有哪些方面可 ...
- PRD文档怎么写
昨天学习PMP的相关文档,正好看到里面讲的PRD文档是怎么写的 就把一些学习过程,思维方式,还有用到的工具给记录下来 方便自己以后需要的时候,再去查阅,再读这个教程的时候,我顺便用脑图画了一下 脑图工 ...