布隆过滤器 Bloom Filter
使用普通集合来判断一个元素是否已存在于集合中,需要占用比较大的空间。而使用Bloom Filter 可有效节省空间。 Bloom Filter 以较少的内存占用及较小的误判率达到判断元素是否存已经加入集合中的目的。Bloom Filter是一种空间效率很高的随机数据结构,可以被看作是对位图的扩展.
基本思想
首先创建一个长度位m的位数组,初始化为全0.对集合S中的每一个元素,通过k个散列函数计算出k个bit位,将位数组中对应的位置1.那么,当判断一个元素是否存在于集合S中时,同样计算k个bit位,如果位数组中这k个位置任意一位是0,则该元素不在集合S中,如果全是1,则以较大概率认为存在于该集合中.因此存在一定的误判率(false positive rate).
误判率
插入一个元素后,某一特定比特位仍然为 0 的概率为\((1-{1\over m})^k\).
由于
\[
\lim_{x\rightarrow\infty}(1-{1\over x})^{-x}=e
\]
所以插入 n个元素后特定位仍为 0 的概率为\(p'=(1-{1\over m})^{kn}\approx e^{-{kn\over m}}\).
p'同时是位数组中0的比例的数学期望.特定位被置为 1 的概率为:\(t=1-p'\).
误判存在于k个独立hash函数的位都是1的情况,因此误判率为
\[
f=t^k\approx (1-e^{-{kn\over m}})^k
\]
从误判率公式可以看出,当位数组(桶)的位数越多时,误判率越小.而误判率与hash函数个数并非单调递减的关系.
最优散列函数个数
我们的目标是最小化误判率,因此最优的散列函数个数应使得误判率较小.
另\(p=e^{-{kn\over m}}\),则\(f=(1-p)^k=e^{k\ln(1-p)}\).最小化f等价于最小化 \(g=k\ln(1-p)\) 的值.因为\(\ln p=-{kn\over m}\),所以\(k=-{m\over n}\ln p,g=-{m\over n}\ln p\ln(1-p)\).根据对称性,可以看出,当\(p={1\over 2}\)时,\(k={m\over n}\ln2\approx 0.693{m\over n}\)时,取得最小误判率
\[
f=({1\over 2})^k=(2^{-\ln 2})^{m\over n}\approx 0.6185^{m\over n}
\]
p是数组中某一位仍是0的概率,所以p=0.5意味着数组中一半还空着(0位),才能保持低误判率. 从\(k={m\over n}\ln2\) 可以看出最优的hash函数个数应当与数组位数成正比,与集合的元素个数成反比,这也符合我们的直觉.
应用
数据判重或者求交集.
参考
Jacob Honoroff. An Examination of Bloom Filters and their Applications. cs.unc.edu/~fabian/courses/CS600.624/slides/bloomslides.pdf. March 16, 2006.
布隆过滤器 Bloom Filter的更多相关文章
- [转载]布隆过滤器(Bloom Filter)
[转载]布隆过滤器(Bloom Filter) 这部分学习资料来源:https://www.youtube.com/watch?v=v7AzUcZ4XA4 Filter判断不在,那就是肯定不在:Fil ...
- 布隆过滤器(Bloom Filter)详解——基于多hash的概率查找思想
转自:http://www.cnblogs.com/haippy/archive/2012/07/13/2590351.html 布隆过滤器[1](Bloom Filter)是由布隆(Burton ...
- 布隆过滤器(Bloom Filter)的原理和实现
什么情况下需要布隆过滤器? 先来看几个比较常见的例子 字处理软件中,需要检查一个英语单词是否拼写正确 在 FBI,一个嫌疑人的名字是否已经在嫌疑名单上 在网络爬虫里,一个网址是否被访问过 yahoo, ...
- [转载] 布隆过滤器(Bloom Filter)详解
转载自http://www.cnblogs.com/haippy/archive/2012/07/13/2590351.html 布隆过滤器[1](Bloom Filter)是由布隆(Burton ...
- 布隆过滤器(Bloom Filter)详解
直观的说,bloom算法类似一个hash set,用来判断某个元素(key)是否在某个集合中.和一般的hash set不同的是,这个算法无需存储key的值,对于每个key,只需要k个比特位,每个存储一 ...
- 浅谈布隆过滤器Bloom Filter
先从一道面试题开始: 给A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL. 这个问题的本质在于判断一个元素是否在一个集合中.哈希表以O(1) ...
- 【面试突击】-缓存击穿(布隆过滤器 Bloom Filter)
原文地址:https://blog.csdn.net/fouy_yun/article/details/81075432 前面的文章介绍了缓存的分类和使用的场景.通常情况下,缓存是加速系统响应的一种途 ...
- 布隆过滤器 Bloom Filter 2
date: 2020-04-01 17:00:00 updated: 2020-04-01 17:00:00 Bloom Filter 布隆过滤器 之前的一版笔记 点此跳转 1. 什么是布隆过滤器 本 ...
- 布隆过滤器(Bloom Filter)-学习笔记-Java版代码(挖坑ing)
布隆过滤器解决"面试题: 如何建立一个十亿级别的哈希表,限制内存空间" "如何快速查询一个10亿大小的集合中的元素是否存在" 如题 布隆过滤器确实很神奇, 简单 ...
- 探索C#之布隆过滤器(Bloom filter)
阅读目录: 背景介绍 算法原理 误判率 BF改进 总结 背景介绍 Bloom filter(后面简称BF)是Bloom在1970年提出的二进制向量数据结构.通俗来说就是在大数据集合下高效判断某个成员是 ...
随机推荐
- 【RL系列】马尔可夫决策过程——状态价值评价与动作价值评价
请先阅读上两篇文章: [RL系列]马尔可夫决策过程中状态价值函数的一般形式 [RL系列]马尔可夫决策过程与动态编程 状态价值函数,顾名思义,就是用于状态价值评价(SVE)的.典型的问题有“格子世界(G ...
- [shell] bash数组(for时排序)
for处理时会自动把顺序按A-Z排序了 [root@XM-v106 ~]# bash b.sh A -> B -> C -> D -> E -> [root@XM-v10 ...
- 记一次线上gc调优的过程
近期公司运营同学经常表示线上我们一个后台管理系统运行特别慢,而且经常出现504超时的情况.对于这种情况我们本能的认为可能是代码有性能问题,可能有死循环或者是数据库调用次数过多导致接口运行 ...
- 自定义UIView怎么注册销毁NSNotification通知
问题描述:在使用天猫tangram框架后.部分组件自定义后会用到通知,但是在iOS 8 系统中,会崩溃? 原因分析:当对象挂掉后,要对应移除注册的通知. 否则当你重复执行发送通知的时候,在iOS8 系 ...
- Beta周王者荣耀交流协会第一次Scrum会议
1.立会照片 成员王超,高远博,冉华,王磊,王玉玲,任思佳,袁玥全部到齐. master:王超 2.时间跨度: 2017年11月10日 15:10 — 15:50 ,总计40分钟. 3.地 点: 一食 ...
- Daily Scrum (2015/10/23)
这天晚上PM和我一起细算下来这周的确做了不少事儿.由于这天是周五,有的组员今晚有外出活动,有的组员忙了一周想休息一下.所以PM与我讨论提出今晚就布置些阅读的任务,给组员们一些自由分配的时间: 成员 今 ...
- Linux 环境下Web环境搭建————ActiveMQ
1.下载安装包http://activemq.apache.org/activemq-5143-release.html 2.解压至指定目录 bin目录下为执行脚本 (脚本无法执行需要修改权限(chm ...
- 结对项目作业报告——四则运算web项目
成员:顾思宇2016011993 程羚2016012050 1.仓库地址:https://git.coding.net/DandelionClaw/WEB_Calculator.git 注: 本项 ...
- TCP系列53—拥塞控制—16、Destination Metrics和Congestion Manager
一.概述 我们之前介绍过rtt.ssthresh等变量,这些变量一般在TCP连接建立的时候有个初始值,然后随着TCP的数据交互逐渐调整到适应对应的网络状态的值.但是如果每次TCP建立连接都依靠默认初始 ...
- JabRef学习笔记(一)
JabRef简介 JabRef is an open source bibliography reference manager. The native file format used by Jab ...