自编码器可以用于降维,添加噪音学习也可以获得去噪的效果。

以下使用单隐层训练mnist数据集,并且共享了对称的权重参数。

模型本身不难,调试的过程中有几个需要注意的地方:

  • 模型对权重参数初始值敏感,所以这里对权重参数w做了一些限制
  • 需要对数据标准化
  • 学习率设置合理(Adam,0.001)

1,建立模型

import numpy as np
import tensorflow as tf class AutoEncoder(object):
'''
使用对称结构,解码器重用编码器的权重参数
'''
def __init__(self, input_shape, h1_size, lr):
tf.reset_default_graph()# 重置默认计算图,有时出错后内存还一团糟
with tf.variable_scope('auto_encoder', reuse=tf.AUTO_REUSE):
self.W1 = self.weights(shape=(input_shape, h1_size), name='h1')
self.b1 = self.bias(h1_size)
self.W2 = tf.transpose(tf.get_variable('h1')) # 共享参数,使用其转置
self.b2 = self.bias(input_shape)
self.lr = lr
self.input = tf.placeholder(shape=(None, input_shape),
dtype=tf.float32)
self.h1_out = tf.nn.softplus(tf.matmul(self.input, self.W1) + self.b1)# softplus,类relu
self.out = tf.matmul(self.h1_out, self.W2) + self.b2
self.optimizer = tf.train.AdamOptimizer(learning_rate=self.lr)
self.loss = 0.1 * tf.reduce_sum(
tf.pow(tf.subtract(self.input, self.out), 2))
self.train_op = self.optimizer.minimize(self.loss)
self.sess = tf.Session()
self.sess.run(tf.global_variables_initializer()) def fit(self, X, epoches=100, batch_size=128, epoches_to_display=10):
batchs_per_epoch = X.shape[0] // batch_size
for i in range(epoches):
epoch_loss = []
for j in range(batchs_per_epoch):
X_train = X[j * batch_size:(j + 1) * batch_size]
loss, _ = self.sess.run([self.loss, self.train_op],
feed_dict={self.input: X_train})
epoch_loss.append(loss)
if i % epoches_to_display == 0:
print('avg_loss at epoch %d :%f' % (i, np.mean(epoch_loss)))
# return self.sess.run(W1) # 权重初始化参考别人的,这个居然很重要!用自己设定的截断正态分布随机没有效果
def weights(self, shape, name, constant=1):
fan_in = shape[0]
fan_out = shape[1]
low = -constant * np.sqrt(6.0 / (fan_in + fan_out))
high = constant * np.sqrt(6.0 / (fan_in + fan_out))
init = tf.random_uniform_initializer(minval=low, maxval=high)
return tf.get_variable(name=name,
shape=shape,
initializer=init,
dtype=tf.float32) def bias(self, size):
return tf.Variable(tf.constant(0, dtype=tf.float32, shape=[size])) def encode(self, X):
return self.sess.run(self.h1_out, feed_dict={self.input: X}) def decode(self, h):
return self.sess.run(self.out, feed_dict={self.h1_out: h}) def reconstruct(self, X):
return self.sess.run(self.out, feed_dict={self.input: X})

2,加载数据及预处理

from keras.datasets import mnist
(X_train, y_train), (X_test, y_test) = mnist.load_data() import random
X_train = X_train.reshape(-1, 784)
# 测试集里随机10个图片用做测试
test_idxs = random.sample(range(X_test.shape[0]), 10)
data_test = X_test[test_idxs].reshape(-1, 784)
# 标准化
import sklearn.preprocessing as prep
processer = prep.StandardScaler().fit(X_train) # 这里还是用全部数据好,这个也很关键!
X_train = processer.transform(X_train)
X_test = processer.transform(data_test) # 随机5000张图片用做训练
idxs = random.sample(range(X_train.shape[0]), 5000)
data_train = X_train[idxs]

3,训练

model = AutoEncoder(784, 200, 0.001)  # 学习率对loss影响也有点大
model.fit(data_train, batch_size=128, epoches=200) # 200轮即可

4,测试,可视化对比图

decoded_test = model.reconstruct(X_test)

import matplotlib.pyplot as plt
%matplotlib inline
shape = (28, 28)
fig, axes = plt.subplots(2,10,
figsize=(10, 2),
subplot_kw={
'xticks': [],
'yticks': []
},
gridspec_kw=dict(hspace=0.1, wspace=0.1))
for i in range(10):
axes[0][i].imshow(np.reshape(X_test[i], shape))
axes[1][i].imshow(np.reshape(decoded_test[i], shape))
plt.show()

结果如下:

以上,可以在输入中添加点高斯噪音,增加鲁棒性。

TensorFlow自编码器(AutoEncoder)之MNIST实践的更多相关文章

  1. 用tensorflow搭建RNN(LSTM)进行MNIST 手写数字辨识

    用tensorflow搭建RNN(LSTM)进行MNIST 手写数字辨识 循环神经网络RNN相比传统的神经网络在处理序列化数据时更有优势,因为RNN能够将加入上(下)文信息进行考虑.一个简单的RNN如 ...

  2. 吴裕雄 PYTHON 神经网络——TENSORFLOW 双隐藏层自编码器设计处理MNIST手写数字数据集并使用TENSORBORD描绘神经网络数据2

    import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data os.envi ...

  3. 吴裕雄 PYTHON 神经网络——TENSORFLOW 单隐藏层自编码器设计处理MNIST手写数字数据集并使用TensorBord描绘神经网络数据

    import os import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tensorflow ...

  4. 学习笔记TF061:分布式TensorFlow,分布式原理、最佳实践

    分布式TensorFlow由高性能gRPC库底层技术支持.Martin Abadi.Ashish Agarwal.Paul Barham论文<TensorFlow:Large-Scale Mac ...

  5. 深度学习之自编码器AutoEncoder

    原文地址:https://blog.csdn.net/marsjhao/article/details/73480859 一.什么是自编码器(Autoencoder) 自动编码器是一种数据的压缩算法, ...

  6. Tesorflow-自动编码器(AutoEncoder)

    直接附上代码: import numpy as np import sklearn.preprocessing as prep import tensorflow as tf from tensorf ...

  7. tensorflow学习笔记五:mnist实例--卷积神经网络(CNN)

    mnist的卷积神经网络例子和上一篇博文中的神经网络例子大部分是相同的.但是CNN层数要多一些,网络模型需要自己来构建. 程序比较复杂,我就分成几个部分来叙述. 首先,下载并加载数据: import ...

  8. tensorflow学习笔记四:mnist实例--用简单的神经网络来训练和测试

    刚开始学习tf时,我们从简单的地方开始.卷积神经网络(CNN)是由简单的神经网络(NN)发展而来的,因此,我们的第一个例子,就从神经网络开始. 神经网络没有卷积功能,只有简单的三层:输入层,隐藏层和输 ...

  9. Tensorflow学习笔记(对MNIST经典例程的)的代码注释与理解

    1 #coding:utf-8 # 日期 2017年9月4日 环境 Python 3.5  TensorFlow 1.3 win10开发环境. import tensorflow as tf from ...

随机推荐

  1. 抓取腾讯招聘python岗位

    # -*- coding: utf-8 -*- """ @author: Dell Created on Mon Dec 23 17:55:06 2019 "& ...

  2. 箭头函数中可改变this作用域,回调函数用箭头函数this指向page,自定义事件用箭头函数this指向undefined

    1.回调函数中,用箭头函数改变this的作用域 success: (res)=>{ this.setData({ //此时,this指向page页面 ... }) } 2.自定义事件中,如果使用 ...

  3. python中的堆和栈

    内存中的堆栈和数据结构堆栈不是一个概念,可以说内存中的堆栈是真实存在的物理区,数据结构中的堆栈是抽象的数据存储结构.内存空间在逻辑上分为三部分:代码区.静态数据区和动态数据区,动态数据区又分为栈区和堆 ...

  4. MySQL的密码操作命令

    一.请问在win2K命令提示符下怎样更改mysql的root管理员密码? >mysql -u root -p Enter password: ****** mysql> use mysql ...

  5. Volatile关键字的两个作用

    1.保证修饰的变量对所有线程的可见性,这里的“可见性”是指当一条线程修改了这个值,新值对于其他线程来说是可以立即得知的. 2.禁止指令重新排序化

  6. Linux安装JDK、tomcat

    修改tomcat 相关配置必须重启后才生效 如何启动tomcat 在终端框内切换到tomcat 的bin路径下 启动tomcat:./startup.sh 关闭tomcat:./shutdown.sh ...

  7. linux IP 网关配置

    1. 关闭selinux 与防火墙 在虚拟机装好之后之后,先关闭selinux与防火墙 关闭selinx,重启生效 vim /etc/selinux/config 修改 SELINUX=disable ...

  8. mongoRepository 支持的所有接口

    与HibernateRepository类似,通过继承MongoRepository接口,我们可以非常方便地实现对一个对象的增删改查,要使用Repository的功能,先继承MongoReposito ...

  9. Hive数据提取

    Hive是基于Hadoop的ETL工具和数据仓库. 结构化数据 结构化数据就像RDBMS hive> create table structured_table(id int, name str ...

  10. If表达式 kotlin(8)

    If表达式 在 Kotlin 中, if 是一个表达式,即它会返回一个值. 因此就不需要三元运算符(条件 ? 然 后 : 否则) ,因为普通的 if 就能胜任这个角色. // 传统用法 var max ...