欧拉函数 &【POJ 2478】欧拉筛法
通式: $\phi(x)=x(1-\frac{1}{p_1})(1-\frac{1}{p_2})(1-\frac{1}{p_3}) \cdots (1-\frac{1}{p_n})$
若n是质数p的k次幂:$\phi(n)=p^k-p^{k-1}=(p-1)p^{k-1}$,因为除了p的倍数外,其他数都跟n互质。
zky学长上课时留的思考题,关于$n = \sum_{d|n} \phi(d)$的证明:
①当$n$为质数时,显而易见$n= \sum_{d|n} \phi(d)= \phi(1) + \phi(n) = n$
②当$n=p^a$时
\[ \begin{aligned} n & = \sum_{d|n} \phi(d) \\ & = \sum_{i=0}^a \phi(p^i) \\ & = \phi(1) + \phi(p^1) + \phi(p^2) + \cdots + \phi(p^a) \\ & = 1 + p^1-p^0+p^2-p^1+ \cdots +p^a-p^{a-1} \\ = p^a = n \end{aligned} \]
③当$n$为其他情况时,将$n$分解质因数得$n=p_{1}^{a_{1}}p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$,对于每个$p_{i}^{a_{i}}$是互质的,那么由积性函数的性质($n$和$m$互质,则$\phi(nm)=\phi(n)\phi(m)$)和②中的证明可以得出结论,是不是很简单啊
单个欧拉函数求法:
int euler_phi(int n){
int m=(int)sqrt(n+0.5);
int ans=n;
for(int i=2;i<=m;++i)
if (n%i==0){
ans=ans/i*(i-1);
while (n%i==0)
n/=i;
}
if (n>1) ans=ans/n*(n-1);
}
欧拉筛,参考白书上的:
int phi[maxn];
void phi_table(int n){
for(int i=2;i<=n;++i)
phi[i]=0;
phi[1]=1;
for(int i=2;i<=n;++i)
if (!phi[i])
for(int j=i;j<=n;j+=i){
if (!phi[j])
phi[j]=j;
phi[j]=phi[j]/i*(i-1);
}
}
POJ 2478 O(n)内筛法:
#include<cstdio>
using namespace std;
const int N=1000003;
int num=0,prime[N],phi[N];
bool notp[N];
inline void shai(){
phi[1]=1;
for(int i=2;i<N;++i){
if (!notp[i]){
prime[++num]=i;
phi[i]=i-1;
}
for(int j=1;j<=num&&i*prime[j]<N;++j){
notp[i*prime[j]]=1;
if (i%prime[j]==0){
phi[i*prime[j]]=phi[i]*prime[j];
break;
}else
phi[i*prime[j]]=phi[i]*phi[prime[j]];
}
}
}
int main(){
shai();
int x;
long long ans;
scanf("%d\n",&x);
while (x){
ans=0;
for(int i=2;i<=x;++i)
ans+=phi[i];
printf("%I64d\n",ans);
scanf("%d\n",&x);
}
return 0;
}
这样就可以啦
欧拉函数 &【POJ 2478】欧拉筛法的更多相关文章
- POJ 2478 欧拉函数打表的运用
http://poj.org/problem?id=2478 此题只是用简单的欧拉函数求每一个数的互质数的值会超时,因为要求很多数据的欧拉函数值,所以选用欧拉函数打表法. PS:因为最后得到的结果会很 ...
- 欧拉函数 and 大数欧拉 (初步)
前两天总结了素数筛法,其中就有Eular筛法.现在他又来了→→ φ(n),一般被称为欧拉函数.其定义为:小于n的正整数中与n互质的数的个数. 毕竟是伟大的数学家,所以以他名字命名的东西很多辣. 对于φ ...
- uva11426 欧拉函数应用,kuangbin的筛法模板
/* 给定n,对于所有的对(i,j),i<j,求出sum{gcd(i,j)} 有递推式sum[n]=sum[n-1]+f[n] 其中f[n]=gcd(1,n)+gcd(2,n)+gcd(3,n) ...
- 51nod 1239 欧拉函数之和【欧拉函数+杜教筛】
和bzoj 3944比较像,但是时间卡的更死 设\( f(n)=\sum_{d|n}\phi(d) g(n)=\sum_{i=1}^{n}f(i) s(n)=\sum_{i=1}^{n}\phi(i) ...
- 数学之欧拉函数 &几道poj欧拉题
欧拉函数总结+证明 欧拉函数总结2 POJ 1284 原根 #include<iostream> #include<cstdio> #include<cstring> ...
- UVA 11426 GCD - Extreme (II) (欧拉函数+筛法)
题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/O 题意是给你n,求所有gcd(i , j)的和,其中 ...
- poj2480(利用欧拉函数的积性求解)
题目链接: http://poj.org/problem?id=2480 题意:∑gcd(i, N) 1<=i <=N,就这个公式,给你一个n,让你求sum=gcd(1,n)+gcd(2, ...
- UVa 10820 (打表、欧拉函数) Send a Table
题意: 题目背景略去,将这道题很容易转化为,给出n求,n以内的有序数对(x, y)互素的对数. 分析: 问题还可以继续转化. 根据对称性,我们可以假设x<y,当x=y时,满足条件的只有(1, 1 ...
- A - Bi-shoe and Phi-shoe (欧拉函数打表)
Description Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe is a ver ...
- NOIP模拟:切蛋糕(数学欧拉函数)
题目描述 BG 有一块细长的蛋糕,长度为 n. 有一些人要来 BG 家里吃蛋糕, BG 把蛋糕切成了若干块(整数长度),然后分给这些人. 为了公平,每个人得到的蛋糕长度和必须相等,且必须是连续的一段 ...
随机推荐
- TestNG之注解的生命周期
有必要介绍一下TestNG注解的生命周期,先看一下官网支持的注解有 @BeforeSuite@AfterSuite@BeforeTest@AfterTest@BeforeGroups@AfterGro ...
- 2016年秋季的我,work with hololens
- quad 和 plane 区别是什么?
Quad就是两个三角形组成四边形,Plane会有很多三角形,哦也 貌似Quad拖上去后看不见,很薄的感觉
- Eclipse和MyEclipse工程描述符.classpath和.project和.mymetadata详解aaaaaa(转)
Eclipse和MyEclipse工程描述符.classpath和.project和.mymetadata详解(转) (2012-03-28 15:06:54) 转载▼ 标签: .mymetadata ...
- Twitter Snowflake 的Java实现
在关闭显示的情况下, 可以达到每毫秒3万个的生成速度 /** * An Implementation of Twitter Snowflake ID Generator */ public class ...
- [转]Linux日志文件总管——logrotate
FROM : https://linux.cn/article-4126-1.html 日志文件包含了关于系统中发生的事件的有用信息,在排障过程中或者系统性能分析时经常被用到.对于忙碌的服务器,日志文 ...
- jboss CLI 命令行接口学习(适用JBOSS EAP 6.2+)
一.确认CLI所使用的端口 以domain模式为例,查看domain controller(也就是master主机)上的host.xml <management-interfaces> & ...
- ZooKeeper 笔记(4) 实战应用之【消除单点故障】
关键节点的单点故障(Single Point of Failure)在大型的架构中,往往是致命的.比如:SOA架构中,服务注册中心(Server Register)统一调度所有服务,如果这个节点挂了, ...
- Java的性能优化
http://www.toutiao.com/i6368345864624144897/?tt_from=mobile_qq&utm_campaign=client_share&app ...
- 利用manifest文件对程序目录下的dll进行分类
1 背景 对于大部分的券商和机构投资者,只能通过有交易所交易系统接入资质的券商提供的柜台系统来进行现货交易.相对于期货市场,现货市场的柜台系统千差万别,接入协议有明文字符串.二进制数据和FIX协议等, ...