Floyd-Warshall算法正确性证明
以下所有讨论,都是基于有向无负权回路的图上的。因为这一性质,任何最短路径都不会含有环,所以也不讨论路径中包含环的情形!并且为避免混淆,将“最短路径”称为权值最小的路径,将路径经过的点数-1称为路径的长度。
先列出算法的c语言代码实现,后面将用这段代码来辅助证明。
int n;//从1..n共n个点
int dis[maxn][maxn];//权值邻接矩阵
init();//初始化数据
for(int k=1;k<=n;++k)
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
先用比较形象的语言来简单叙述一遍。
- 以下“每次更新路径”指k=k_i时内层的两重循环,k是每次更新路径采用的“中间点”。
- 每个点k在被用作中间点时,相关路径的最小权值,已经被继承到本次更新的路径里了。其他没有被更新的点想通过k进行连接,就一定包含本次更新的路径。并且后续只保留任意两个端点间权值最小的那条路径进行计算。
- 因此在更新n次后,与所有点的相关路径的最小权值,都已经更新完毕。也就是说,所有的路径都已经考虑并更新过了。
下面是比较符号化的严谨证明。
- 设共有\(1..n\)共\(n\)个点,初始化所有长度为1的路径集合为\(R\),\(x\)与\(y\)的当前最小路径权值为\(dis[x][y]\),这个最小权值对应\(R\)中的一条路径\(x,r_1,r_2,...,y\)。
- 现在采用数学归纳法,以\(k=1..n\)进行\(n\)次路径扩展,并更新\(R和dis[][]\)。
- 当\(k=1\)时,\(R\)中已经包含所有顶点两两连接的路径。选取所有的路径\(x,k和k,y\),进行连接得到\(G\{d|d=x,k,y\}\)。\(R=R\cup G\),更新\(dis[][]\)。
这样,\(R\)中就包含了:起点与终点之间(不包含起点、终点),仅含点1的所有路径。因为没有负权回路,所以后续更新的多次经过点1的路径都不影响最小权值性质,并且也可以被R中去除路径中回路部分的路径替代(不影响其连接作用且权值更小,以下将不再讨论有回路的路径情况)。 - 假设当\(k=1..n\)时,\(R\)中已经包含:起点与终点之间(不包含起点、终点),仅含\(1..k-1\)的所有路径。令\(r_k=k\),选取R中的所有起点为\(k\)的路径\(S\{d|d=x,r_1,r_2,...r_k\}\),和所有以\(k\)为终点的路径\(T\{d|d=r_k,r_k+1,...y\}\),让\(S\)与\(T\)中的路径两两连接,得到\(G\{d|d=x,...,r_k,...,y\}\)。然后令\(R=R\cup G\),更新\(dis[][]\)。这样,\(R\)中就已经包含了:起点与终点之间(不包含起点、终点),仅含\(1..k\)的所有路径。原假设成立。
- 上述做法进行到\(k=n\)结束,\(R\)中就已经包含了这个图所有的路径连接可能。而更新\(dis[][]\)的步骤,因为所有的\(R\)中的路径对应的\(dis[i][k]\)和\(dis[k][j]\)都在之前计算过了,所以实际上每轮就只需计算\(dis[i][j]=min\{dis[i][j],dis[i][k]+dis[k][j]\}\)。
在做作业的时候遇到这个算法,想起来好像一直在用但并不理解它的正确性,所以尝试证明了一下。正好也作为我写博客的一个开头吧。
Floyd-Warshall算法正确性证明的更多相关文章
- Floyd—Warshall算法
我们用DP来求解任意两点间的最短路问题 首先定义状态:d[k][i][k]表示使用顶点1~k,i,j的情况下,i到j的最短路径 (d[0][i][j]表示只使用i和j,因此d[0][i][j] = c ...
- 图论之最短路径(1)——Floyd Warshall & Dijkstra算法
开始图论学习的第二部分:最短路径. 由于知识储备还不充足,暂时不使用邻接表的方法来计算. 最短路径主要分为两部分:多源最短路径和单源最短路径问题 多源最短路径: 介绍最简单的Floyd Warshal ...
- Gym 101873D - Pants On Fire - [warshall算法求传递闭包]
题目链接:http://codeforces.com/gym/101873/problem/D 题意: 给出 $n$ 个事实,表述为 "XXX are worse than YYY" ...
- Floyd最短路径算法
看完这篇文章写的小程序,Floyd最短路径算法,求从一个点到另一个点的最短距离,中间可以经过其他任意个点.三个for循环,从i到j依次经过k的最短距离,最外层for循环是经过点K,内部两个循环是从i( ...
- WarShall算法
1.引言 图的连通性问题是图论研究的重要问题之一,在实际中有着广泛的应用.例如在通信网络的联通问题中,运输路线的规划问题等等都涉及图的连通性.因此传递闭包的计算需要一个高效率的算法,一个著名的算法就是 ...
- [C++]动态规划系列之Warshall算法
/** * * @author Zen Johnny * @date 2018年3月31日 下午8:13:09 * */ package freeTest; /* [动态规划系列:Warshall算法 ...
- POJ 2253 Frogger(warshall算法)
题意:湖中有很多石头,两只青蛙分别位于两块石头上.其中一只青蛙要经过一系列的跳跃,先跳到其他石头上,最后跳到另一只青蛙那里.目的是求出所有路径中最大变长的最小值(就是在到达目的地的路径中,找出青蛙需要 ...
- Warshall算法求传递闭包及具体实现
传递闭包 在数学中,在集合 X 上的二元关系 R 的传递闭包是包含 R 的 X 上的最小的传递关系. 例如,如果 X 是(生或死)人的集合而 R 是关系“为父子”,则 R 的传递闭包是关系“x 是 y ...
- Floyd最短路径算法(来自微信公众号“算法爱好者”改编)
暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程. 上图中有4个城市8条公路,公路上的数字表 ...
- Algorithm --> Dijkstra和Floyd最短路径算法
Dijkstra算法 一.最短路径的最优子结构性质 该性质描述为:如果P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,k和s是这条路径上的一个中间顶点,那么P(k,s)必 ...
随机推荐
- Java 程序该怎么优化?(实战篇)
面试官:出现了性能问题,该怎么去排查呢? 程序猿:接口响应那么慢,时间都花到哪里去了? 运维喵:为什么你的应用跑着跑着,CPU 就接近 100%? 分享一些真实生产问题排查故事,看看能否涨姿势,能否 ...
- JAVA设计模式——(2)策略模式
定义 定义一种算法,将每个算法都封装起来,并且使它们之间可以互换.是一种行为类模式. 举例 为了通俗易懂,我们拿各国的税率计算来举例子: 假设当前我们的程序只能支持计算中国和美国的税率: public ...
- JQ前端上传图片显示在页面以及发送到后端服务器
// 单张上传照片 html: <div class="azwoo"></div> <div class="azwot"& ...
- Redis设计与实现笔记 - hash
基本结构如下 初始状态一直使用 dictht[0],即 0 号哈希表 在发生扩容 rehash的时候,开始渐进式向 dictht[1]哈希表转移, 转移完成后交换 dicth[0] 与 dictht[ ...
- Java第十四天,集合、迭代器的使用
集合 集合框架 一.Collection 1.定义方法: Collection<E> obj = new Collection子类<>(); 因为Collection是一个抽象 ...
- 列表推导式和seed()的理解
Table of Contents generated with DocToc 列表推导式和seed()的理解 对seed()的理解 列表推导式 第一种用法 第二种用法 列表推导式和seed()的理解 ...
- Salesforce 开发 | Salesforce与微信集成实操指南
配置前须知 Salesforce通过试点对特定客户提供Lightning WeChat Messaging,该试点需要同意特定的条款.除非Salesforce宣布WeChat Messaging全面可 ...
- E - Aladdin and the Flying Carpet
It's said that Aladdin had to solve seven mysteries before getting the Magical Lamp which summons a ...
- 忍不住还是手写了一遍博客的css
F12边调边改,的一点一点撸出来这个效果.感觉已经可以了.日历感觉没什么用直接隐藏了.
- 如果这篇文章说不清epoll的本质,那就过来掐死我吧!
转载自:https://www.toutiao.com/i6683264188661367309/ 目录 一.从网卡接收数据说起 二.如何知道接收了数据? 三.进程阻塞为什么不占用cpu资源? 四.内 ...