基于物品的协同过滤ItemCF的mapreduce实现
文章的UML图比较好看.....
原文链接:www.cnblogs.com/anny-1980/articles/3519555.html
基于物品的协同过滤ItemCF
数据集字段:
1. User_id: 用户ID
2. Item_id: 物品ID
3. preference:用户对该物品的评分
算法的思想:
1. 建立物品的同现矩阵A,即统计两两物品同时出现的次数
数据格式:Item_id1:Item_id2 次数
2. 建立用户对物品的评分矩阵B,即每一个用户对某一物品的评分
数据格式:Item_id user_id:preference
3. 推荐结果=物品的同现矩阵A * 用户对物品的评分矩阵B
数据格式:user_id item_id,推荐分值
4. 过滤用户已评分的物品项
5.对推荐结果按推荐分值从高到低排序
原始数据:
|
1,101,5.0 1,102,3.0 1,103,2.5 2,101,2.0 2,102,2.5 2,103,5.0 2,104,2.0 3,101,2.0 3,104,4.0 3,105,4.5 3,107,5.0 4,101,5.0 4,103,3.0 4,104,4.5 4,106,4.0 5,101,4.0 5,102,3.0 5,103,2.0 5,104,4.0 5,105,3.5 5,106,4.0 6,102,4.0 6,103,2.0 6,105,3.5 6,107,4.0 |
Hadoop MapReduce程序分为四步:
第一步: 读取原始数据,按用户ID分组,输出文件数据格式为
|
1 103:2.5,101:5.0,102:3.0 2 101:2.0,102:2.5,103:5.0,104:2.0 3 107:5.0,101:2.0,104:4.0,105:4.5 4 103:3.0,106:4.0,104:4.5,101:5.0 5 101:4.0,102:3.0,103:2.0,104:4.0,105:3.5,106:4.0 6 102:4.0,103:2.0,105:3.5,107:4.0 |
第二步:统计两两物品同时出现的次数,输出文件数据格式为
|
101:101 5 101:102 3 101:103 4 101:104 4 101:105 2 101:106 2 101:107 1 102:101 3 102:102 4 102:103 4 102:104 2 102:105 2 102:106 1 102:107 1 103:101 4 103:102 4 103:103 5 103:104 3 103:105 2 103:106 2 103:107 1 104:101 4 104:102 2 104:103 3 104:104 4 104:105 2 104:106 2 104:107 1 105:101 2 105:102 2 105:103 2 105:104 2 105:105 3 105:106 1 105:107 2 106:101 2 106:102 1 106:103 2 106:104 2 106:105 1 106:106 2 107:101 1 107:102 1 107:103 1 107:104 1 107:105 2 107:107 2 |
第三步:生成用户评分矩阵和物品同现矩阵
第一个mapper结果为用户评分矩阵,结果如下:
|
101 2:2.0 101 5:4.0 101 4:5.0 101 3:2.0 101 1:5.0 102 2:2.5 102 1:3.0 102 6:4.0 102 5:3.0 103 6:2.0 103 5:2.0 103 1:2.5 103 4:3.0 103 2:5.0 104 5:4.0 104 2:2.0 104 3:4.0 104 4:4.5 105 5:3.5 105 3:4.5 105 6:3.5 106 4:4.0 106 5:4.0 107 3:5.0 107 6:4.0 |
第二个mapper生成物品同现矩阵,结果如下:
|
101:101 5 101:102 3 101:103 4 101:104 4 101:105 2 101:106 2 101:107 1 102:101 3 102:102 4 102:103 4 102:104 2 102:105 2 102:106 1 102:107 1 103:101 4 103:102 4 103:103 5 103:104 3 103:105 2 103:106 2 103:107 1 104:101 4 104:102 2 104:103 3 104:104 4 104:105 2 104:106 2 104:107 1 105:101 2 105:102 2 105:103 2 105:104 2 105:105 3 105:106 1 105:107 2 106:101 2 106:102 1 106:103 2 106:104 2 106:105 1 106:106 2 107:101 1 107:102 1 107:103 1 107:104 1 107:105 2 107:107 2 |
第四步:做矩阵乘法,推荐结果=物品的同现矩阵A * 用户对物品的评分矩阵B
结果如下:
|
1 107,10.5 1 106,18.0 1 105,21.0 1 104,33.5 1 103,44.5 1 102,37.0 1 101,44.0 2 107,11.5 2 106,20.5 2 105,23.0 2 104,36.0 2 103,49.0 2 102,40.0 2 101,45.5 3 107,25.0 3 106,16.5 3 105,35.5 3 104,38.0 3 103,34.0 3 102,28.0 3 101,40.0 4 107,12.5 4 106,33.0 4 105,29.0 4 104,55.0 4 103,56.5 4 102,40.0 4 101,63.0 5 107,20.0 5 106,34.5 5 105,40.5 5 104,59.0 5 103,65.0 5 102,51.0 5 101,68.0 6 107,21.0 6 106,11.5 6 105,30.5 6 104,25.0 6 103,37.0 6 102,35.0 6 101,31.0 |

基于物品的协同过滤ItemCF的mapreduce实现的更多相关文章
- 转】Mahout分步式程序开发 基于物品的协同过滤ItemCF
原博文出自于: http://blog.fens.me/hadoop-mahout-mapreduce-itemcf/ 感谢! Posted: Oct 14, 2013 Tags: Hadoopite ...
- Mahout分步式程序开发 基于物品的协同过滤ItemCF
http://blog.fens.me/hadoop-mahout-mapreduce-itemcf/ Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, ...
- 基于物品的协同过滤item-CF 之电影推荐 python
推荐算法有基于协同的Collaboration Filtering:包括 user Based和item Based:基于内容 : Content Based 协同过滤包括基于物品的协同过滤和基于用户 ...
- 推荐召回--基于物品的协同过滤:ItemCF
目录 1. 前言 2. 原理&计算&改进 3. 总结 1. 前言 说完基于用户的协同过滤后,趁热打铁,我们来说说基于物品的协同过滤:"看了又看","买了又 ...
- 基于物品的协同过滤算法(ItemCF)
最近在学习使用阿里云的推荐引擎时,在使用的过程中用到很多推荐算法,所以就研究了一下,这里主要介绍一种推荐算法—基于物品的协同过滤算法.ItemCF算法不是根据物品内容的属性计算物品之间的相似度,而是通 ...
- ItemCF_基于物品的协同过滤_MapReduceJava代码实现思路
ItemCF_基于物品的协同过滤 1. 概念 2. 原理 如何给用户推荐? 给用户推荐他没有买过的物品--103 3. java代码实现思路 数据集: 第一步:构建物品的同现矩阵 第 ...
- ItemCF_基于物品的协同过滤
ItemCF_基于物品的协同过滤 1. 概念 2. 原理 如何给用户推荐? 给用户推荐他没有买过的物品--103 3. java代码实现思路 数据集: 第一步:构建物品的同现矩阵 第 ...
- 基于物品的协同过滤推荐算法——读“Item-Based Collaborative Filtering Recommendation Algorithms” .
ligh@local-host$ ssh-copy-id -i ~/.ssh/id_rsa.pub root@192.168.0.3 基于物品的协同过滤推荐算法--读"Item-Based ...
- Music Recommendation System with User-based and Item-based Collaborative Filtering Technique(使用基于用户及基于物品的协同过滤技术的音乐推荐系统)【更新】
摘要: 大数据催生了互联网,电子商务,也导致了信息过载.信息过载的问题可以由推荐系统来解决.推荐系统可以提供选择新产品(电影,音乐等)的建议.这篇论文介绍了一个音乐推荐系统,它会根据用户的历史行为和口 ...
随机推荐
- Day 1 初识python
1.Python简介 Python的历史 1989年圣诞节:Guido von Rossum开始写Python语言的编译器. 1991年2月:第一个Python编译器(同时也是解释器)诞生,它是用C语 ...
- 15.5.5 【Task实现细节】围绕 await 表达式的控制
任何 await 表达式均表示执行路径的一个分支.首先,被等待的异步操作得到一个awaiter,然后检查其 IsCompleted 属性.若返回 true ,即可立即获得结果并继续.否则,需进行以下处 ...
- 15.5.3 【Task实现细节】状态机的结构
状态机的整体结构非常简单.它总是使用显式接口实现,以实现.NET 4.5引入的 IAsync StateMachine 接口,并且只包含该接口声明的两个方法,即 MoveNext 和 SetState ...
- python-windows环境安装
windows下python环境安装 1. 先在官网上下载安装包,官网地址:https://www.python.org/ 点击windows,进入下载选择 选择python3.7.0,点击进入下载, ...
- BZOJ 2150 cogs 1861 [国家集训队2011]部落战争
题目描述 lanzerb的部落在A国的上部,他们不满天寒地冻的环境,于是准备向A国的下部征战来获得更大的领土. A国是一个M*N的矩阵,其中某些地方是城镇,某些地方是高山深涧无人居住.lanzerb把 ...
- 0622centos下coreseek安装及使用方法
Coreseek 中文全文检索引擎 Coreseek 是一款中文全文检索/搜索软件,以GPLv2许可协议开源发布,基于Sphinx研发并独立发布,专攻中文搜索和信息处理领域,适用于行业/垂直搜索.论坛 ...
- Linux中tty是什么(tty1~7)
tty:终端设备的统称. tty一词源于Teletypes,或者teletypewriters,原来指的是电传打字机,是通过串行线用打印机键盘通过阅读和发送信息的东西,后来这东西被键盘与显示器取代,所 ...
- HDU 1238
好吧,这题直接搜索就可以了,不过要按照长度最短的来搜,很容易想得到. 记得ACM比赛上有这道题,呃..不过,直接搜..呵呵了,真不敢想. #include <iostream> #incl ...
- Github Pages 建立过程记录
之前建立过一个測试页面. 如今在折腾CreateJS 试着把离线版的文档传到github pages上面. 第一步:创建Repository 第二步:本地初始化 主要命令:git init 第三步:复 ...
- hdu1209(Clock)
pid=1209">点击打开hdu1209 Problem Description There is an analog clock with two hands: an hour h ...