题目

已知平面内 \(n\) 个点的坐标,求欧氏距离下的第 \(k\) 远点对。


分析

先将\(k\)乘2转换为第\(k\)远有序点对。

由于\(O(n^2)\)即枚举一个点再枚举另一个点会超出时限,

一个明显的优化就是如果一堆点它们不能对点对距离产生贡献

那么就不必去枚举这些点

考虑用K-D Tree维护区间坐标最小值和坐标最大值,如果不能产生贡献直接退出,

然后在跳左区间或右区间时估价判断哪个可能产生更大贡献那么就改变访问顺序,

然后开一个全为0的小根堆判断即可


代码

#include <cstdio>
#include <cctype>
#include <algorithm>
#include <queue>
#define rr register
using namespace std;
const int N=200011;
typedef long long lll;
int ran,root,n,k;
priority_queue<lll>q;
inline signed iut(){
rr int ans=0,f=1; rr char c=getchar();
while (!isdigit(c)) f=(c=='-')?-f:f,c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans*f;
}
inline void print(int ans){
if (ans<0) putchar('-'),ans=-ans;
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
inline signed min(int a,int b){return a<b?a:b;}
inline lll max(lll a,lll b){return a>b?a:b;}
struct rec{
int p[2];
bool operator <(const rec &t)const{
return p[ran]<t.p[ran];
}
};
inline lll SQR(lll x){return x*x;}
struct KD_Tree{
int mn[N][2],mx[N][2],son[N][2]; rec p[N];
inline void pup(int now){
for (rr int i=0;i<2;++i){
mn[now][i]=mx[now][i]=p[now].p[i];
if (son[now][0]){
mn[now][i]=min(mn[now][i],mn[son[now][0]][i]);
mx[now][i]=max(mx[now][i],mx[son[now][0]][i]);
}
if (son[now][1]){
mn[now][i]=min(mn[now][i],mn[son[now][1]][i]);
mx[now][i]=max(mx[now][i],mx[son[now][1]][i]);
}
}
}
inline signed build(int l,int r,int Ran){
if (l>r) return 0;
rr int mid=(l+r)>>1;
ran=Ran,nth_element(p+l,p+mid,p+1+r);
son[mid][0]=build(l,mid-1,Ran^1);
son[mid][1]=build(mid+1,r,Ran^1);
pup(mid);
return mid;
}
inline lll calc(int t,int x){
return max(SQR(p[x].p[0]-mn[t][0]),SQR(p[x].p[0]-mx[t][0]))+max(SQR(p[x].p[1]-mn[t][1]),SQR(p[x].p[1]-mx[t][1]));
}
inline void query(int now,int x){
rr lll t=SQR(p[x].p[0]-p[now].p[0])+SQR(p[x].p[1]-p[now].p[1]);
if (t>-q.top()) q.pop(),q.push(-t);
rr lll c0=calc(son[now][0],x),c1=calc(son[now][1],x);
if (son[now][0]&&son[now][1]){
if (c0>c1&&c0>-q.top()){
query(son[now][0],x);
if (c1>-q.top()) query(son[now][1],x);
}else if (c1>-q.top()){
query(son[now][1],x);
if (c0>-q.top()) query(son[now][0],x);
}
}else if (son[now][0]){
if (c0>-q.top()) query(son[now][0],x);
}else if (son[now][1]){
if (c1>-q.top()) query(son[now][1],x);
}
}
}Tre;
signed main(){
n=iut(),k=iut()<<1;
for (rr int i=1;i<=k;++i) q.push(0);
for (rr int i=1;i<=n;++i) Tre.p[i].p[0]=iut(),Tre.p[i].p[1]=iut();
root=Tre.build(1,n,0);
for (rr int i=1;i<=n;++i) Tre.query(root,i);
return !printf("%lld",-q.top());
}

#K-D Tree#洛谷 4357 [CQOI2016]K 远点对的更多相关文章

  1. BZOJ3065 带插入区间K小值 || 洛谷P4278

    这是一道让我崩溃的题...... 然鹅洛谷上时限被改然后只有20分......好像所有人都被卡了(雾) 由于替罪羊树不是依靠旋转操作而是依靠暴力重构的方式维护树的平衡,所以我们可以考虑使用替罪羊树套区 ...

  2. 洛谷P1993 小 K 的农场(查分约束)

    /* 加深一下对查分约束的理解 建图的时候为了保证所有点联通 虚拟一个点 它与所有点相连 权值为0 然后跑SPFA判负环 这题好像要写dfs的SPFA 要不超时 比较懒 改了改重复进队的条件~ */ ...

  3. 洛谷P1066 2^k进制数(题解)(递推版)

    https://www.luogu.org/problemnew/show/P1066(题目传送) (题解)https://www.luogu.org/problemnew/solution/P106 ...

  4. 洛谷1066 2^k进制数

    原题链接 大力猜结论竟然猜对了.. 对于一对\(k,w\),我们可以把\(w\)位划分成\(k\)位一段的形式,每一段就是转换成十进制后的一位,这个从题面的解释中应该可以理解. 先不考虑可能多出(即剩 ...

  5. [洛谷P3332][ZJOI2013]K大数查询

    题目大意:有$n$个位置,$m$个操作.操作有两种: $1\;l\;r\;x:$在区间$[l,r]$每个位置加上一个数$x$ $2\;l\;r\;k:$询问$[l,r]$中第$k$大的数是多少. 题解 ...

  6. [NOIP2006] 提高组 洛谷P1066 2^k进制数

    题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后 ...

  7. 洛谷P1138 第k小整数

    我偏不用sort Treap好题啊 看到只有一个人写Treap,而且写的不清楚,那我就来详细地写一下,方便新人学习 第(-1)部分:前置知识 二叉查找树:满足左子树的数据都比根节点小,右子树的数据都比 ...

  8. 洛谷P3332 [ZJOI2013]K大数查询 权值线段树套区间线段树_标记永久化

    Code: #include <cstdio> #include <algorithm> #include <string> #include <cstrin ...

  9. 洛谷P1993 小 K 的农场

    题目描述 小 K 在 Minecraft 里面建立很多很多的农场,总共 n 个,以至于他自己都忘记了每个 农场中种植作物的具体数量了,他只记得一些含糊的信息(共 m 个),以下列三种形式描 述: 农场 ...

  10. 洛谷 P1066 2^k进制数

    P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...

随机推荐

  1. 【Android 逆向】frida 检测绕过

    1. aaa.apk 安装到手机,是一个叫玩吧的应用 ./hooker ...... 23248 浏 览 器 com.browser2345_oem 32541 玩吧 com.wodi.who 244 ...

  2. Android Compose开发

    目录 好处 入门 Composable 布局 其他组件 列表 verticalScroll 延迟列表 内容内边距 性能 修饰符 偏移量 requiredSize 滚动 添加间距Spacer Butto ...

  3. JS内存爆破问题

    原理 检测到调试,格式化等,疯狂的在js文件,或者html中进行读写,cookie重写追加,字节追加,导致内存不足够,卡死 内存爆破,指js通过死循环/频繁操作数据库(包括cookie)/频繁调取hi ...

  4. Oracle设置日志参数-ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

    要实现两个数据库之间的实时同步,需要给Oracle设置参数 ALTER DATABASE ADD SUPPLEMENTAL LOG DATA; -- 执行了12小时,等待数据库中的其它事务都提交以后才 ...

  5. 我的第一个项目(八):(解决问题)图片资源无法加载(Error: Cannot find module "../../xxx" )

    好家伙,问题一堆   先开一个测试页模拟游戏模块的运行 原先的图片初始化方法失效了,(vue里面自然是用不了这种方法的) function createImage(src) { let img; if ...

  6. Apifox:成熟的测试工具要学会自己写接口文档

    好家伙, 在开发过程中,我们总是避免不了进行接口的测试, 而相比手动敲测试代码,使用测试工具进行测试更为便捷,高效 今天发现了一个非常好用的接口测试工具Apifox 相比于Postman,他还拥有一个 ...

  7. 云原生 on nLive:云上 Nebula Graph

    本文首发于 Nebula Graph Community 公众号 在 #云原生# 主题分享中,来自 Nebula 云组的 Cloud 专家乔雷同大家分享云的相关知识,本文整理自该次主题直播. 云原生是 ...

  8. 用图机器学习探索 A 股个股相关性变化

    在本系列的前文 [1,2]中,我们介绍了如何使用 Python 语言图分析库 NetworkX [3] + Nebula Graph [4] 来进行<权力的游戏>中人物关系图谱分析. 在本 ...

  9. 【工具】用nvm管理nodejs版本切换,真香!

    前言 缘由 换个nodejs版本比换个媳妇还难,nvm堪称管理nodejs版本神器 事情的起因,公司的一些老项目需要依赖稳定老版本的nodejs,但是自己的一些项目所需要的是更高版本的nodejs,这 ...

  10. 青少年CTF训练平台-web部分随笔

    文章管理系统 首先打开环境(>ω<。人)ZZz♪♪ 既然要做题,就要做全面了,图上说了,既然有假flag我就先找出来: 假flag: 打开vmware,使用sqlmap进行处理: sqlm ...