题目

已知平面内 \(n\) 个点的坐标,求欧氏距离下的第 \(k\) 远点对。


分析

先将\(k\)乘2转换为第\(k\)远有序点对。

由于\(O(n^2)\)即枚举一个点再枚举另一个点会超出时限,

一个明显的优化就是如果一堆点它们不能对点对距离产生贡献

那么就不必去枚举这些点

考虑用K-D Tree维护区间坐标最小值和坐标最大值,如果不能产生贡献直接退出,

然后在跳左区间或右区间时估价判断哪个可能产生更大贡献那么就改变访问顺序,

然后开一个全为0的小根堆判断即可


代码

#include <cstdio>
#include <cctype>
#include <algorithm>
#include <queue>
#define rr register
using namespace std;
const int N=200011;
typedef long long lll;
int ran,root,n,k;
priority_queue<lll>q;
inline signed iut(){
rr int ans=0,f=1; rr char c=getchar();
while (!isdigit(c)) f=(c=='-')?-f:f,c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans*f;
}
inline void print(int ans){
if (ans<0) putchar('-'),ans=-ans;
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
inline signed min(int a,int b){return a<b?a:b;}
inline lll max(lll a,lll b){return a>b?a:b;}
struct rec{
int p[2];
bool operator <(const rec &t)const{
return p[ran]<t.p[ran];
}
};
inline lll SQR(lll x){return x*x;}
struct KD_Tree{
int mn[N][2],mx[N][2],son[N][2]; rec p[N];
inline void pup(int now){
for (rr int i=0;i<2;++i){
mn[now][i]=mx[now][i]=p[now].p[i];
if (son[now][0]){
mn[now][i]=min(mn[now][i],mn[son[now][0]][i]);
mx[now][i]=max(mx[now][i],mx[son[now][0]][i]);
}
if (son[now][1]){
mn[now][i]=min(mn[now][i],mn[son[now][1]][i]);
mx[now][i]=max(mx[now][i],mx[son[now][1]][i]);
}
}
}
inline signed build(int l,int r,int Ran){
if (l>r) return 0;
rr int mid=(l+r)>>1;
ran=Ran,nth_element(p+l,p+mid,p+1+r);
son[mid][0]=build(l,mid-1,Ran^1);
son[mid][1]=build(mid+1,r,Ran^1);
pup(mid);
return mid;
}
inline lll calc(int t,int x){
return max(SQR(p[x].p[0]-mn[t][0]),SQR(p[x].p[0]-mx[t][0]))+max(SQR(p[x].p[1]-mn[t][1]),SQR(p[x].p[1]-mx[t][1]));
}
inline void query(int now,int x){
rr lll t=SQR(p[x].p[0]-p[now].p[0])+SQR(p[x].p[1]-p[now].p[1]);
if (t>-q.top()) q.pop(),q.push(-t);
rr lll c0=calc(son[now][0],x),c1=calc(son[now][1],x);
if (son[now][0]&&son[now][1]){
if (c0>c1&&c0>-q.top()){
query(son[now][0],x);
if (c1>-q.top()) query(son[now][1],x);
}else if (c1>-q.top()){
query(son[now][1],x);
if (c0>-q.top()) query(son[now][0],x);
}
}else if (son[now][0]){
if (c0>-q.top()) query(son[now][0],x);
}else if (son[now][1]){
if (c1>-q.top()) query(son[now][1],x);
}
}
}Tre;
signed main(){
n=iut(),k=iut()<<1;
for (rr int i=1;i<=k;++i) q.push(0);
for (rr int i=1;i<=n;++i) Tre.p[i].p[0]=iut(),Tre.p[i].p[1]=iut();
root=Tre.build(1,n,0);
for (rr int i=1;i<=n;++i) Tre.query(root,i);
return !printf("%lld",-q.top());
}

#K-D Tree#洛谷 4357 [CQOI2016]K 远点对的更多相关文章

  1. BZOJ3065 带插入区间K小值 || 洛谷P4278

    这是一道让我崩溃的题...... 然鹅洛谷上时限被改然后只有20分......好像所有人都被卡了(雾) 由于替罪羊树不是依靠旋转操作而是依靠暴力重构的方式维护树的平衡,所以我们可以考虑使用替罪羊树套区 ...

  2. 洛谷P1993 小 K 的农场(查分约束)

    /* 加深一下对查分约束的理解 建图的时候为了保证所有点联通 虚拟一个点 它与所有点相连 权值为0 然后跑SPFA判负环 这题好像要写dfs的SPFA 要不超时 比较懒 改了改重复进队的条件~ */ ...

  3. 洛谷P1066 2^k进制数(题解)(递推版)

    https://www.luogu.org/problemnew/show/P1066(题目传送) (题解)https://www.luogu.org/problemnew/solution/P106 ...

  4. 洛谷1066 2^k进制数

    原题链接 大力猜结论竟然猜对了.. 对于一对\(k,w\),我们可以把\(w\)位划分成\(k\)位一段的形式,每一段就是转换成十进制后的一位,这个从题面的解释中应该可以理解. 先不考虑可能多出(即剩 ...

  5. [洛谷P3332][ZJOI2013]K大数查询

    题目大意:有$n$个位置,$m$个操作.操作有两种: $1\;l\;r\;x:$在区间$[l,r]$每个位置加上一个数$x$ $2\;l\;r\;k:$询问$[l,r]$中第$k$大的数是多少. 题解 ...

  6. [NOIP2006] 提高组 洛谷P1066 2^k进制数

    题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后 ...

  7. 洛谷P1138 第k小整数

    我偏不用sort Treap好题啊 看到只有一个人写Treap,而且写的不清楚,那我就来详细地写一下,方便新人学习 第(-1)部分:前置知识 二叉查找树:满足左子树的数据都比根节点小,右子树的数据都比 ...

  8. 洛谷P3332 [ZJOI2013]K大数查询 权值线段树套区间线段树_标记永久化

    Code: #include <cstdio> #include <algorithm> #include <string> #include <cstrin ...

  9. 洛谷P1993 小 K 的农场

    题目描述 小 K 在 Minecraft 里面建立很多很多的农场,总共 n 个,以至于他自己都忘记了每个 农场中种植作物的具体数量了,他只记得一些含糊的信息(共 m 个),以下列三种形式描 述: 农场 ...

  10. 洛谷 P1066 2^k进制数

    P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...

随机推荐

  1. 使用Java线程同步工具类CountDownLatch

    java.util.concurrent.CountDownLatch是Java并发并发编程中的线程同步工具类,基于AQS(java.util.concurrent.locks.AbstractQue ...

  2. Miniconda安装和使用

    Miniconda概述 Miniconda是什么? 要解释Miniconda是什么,先要弄清楚什么是Anaconda,它们之间的关系是什么? 而要知道Anaconda是什么,最先要明白的是搞清楚什么是 ...

  3. auth模块的一些方法

    auth模块 auth模块是cookie和session的升级版,auth模块是对登录认证方法的一种封装,之前我们获取用户输入的用户名及密码后需要自己从user表里查询有没有用户名和密码符合的对象,而 ...

  4. 【系统设计】集团内部HR系统完结,项目从0到1总结

    最近一年学习了PMP,结合下PMP的知识,分享一下最近HR项目的全生命周期流程管理(需求分析.产品设计.系统开发.测试.上线.运营). 先一句话概括:战略分析-收集需求-流程梳理-关键需求-IT规划- ...

  5. [Rust] 数据类型的转换

    数据类型的转换 类型转换的方式 Rust 提供了多种类型转换的方式. as T 用于数类型之间的转换.ixx, uxx, fxx 都可以. 注意:当溢出的时候,转换不会 panic,而是循环映射值. ...

  6. Spring Cloud Zuul 获取当前请求的路由信息和路由后端的服务节点信息

    基本思路 参考spring-cloud-zuul-ratelimit开源项目,在过滤器中根据当前的请求路径,判断当前的路由信息,当取得路由信息后,可以对服务的调用次数做统计等操作. 具体实现 创建一个 ...

  7. springboot-@Async默认线程池导致OOM问题

    目录 内存溢出的三种类型: 初步分析: 代码分析: 最终解决办法: 内存溢出的三种类型: 第一种OutOfMemoryError: PermGen space,发生这种问题的原意是程序中使用了大量的j ...

  8. 【Azure Redis 缓存】Redis导出数据文件变小 / 在新的Redis复原后数据大小压缩近一倍问题分析

    问题描述 使用 Azure Cache for Redis 服务,在两个Redis服务之间进行数据导入和导出测试.在Redis中原本有7G的数据值,但是导出时候发现文件大小仅仅只有30MB左右,这个压 ...

  9. SQL SERVER——高可用技术概述

    自从SQL Server 2005以来,微软已经提供了多种高可用性技术来减少宕机时间和增加对业务数据的保护,而随着SQL Server 2008,SQL Server 2008 R2,SQL Serv ...

  10. Vue3学习(二十二)- 保存文档内容

    写在前面 前面已经调整了布局,富文本编辑器也能正确显示了,那么接下来就是怎么把数据保存到数据库里了,那么怎么做呢? 保存文档内容并显示 1.任务拆解 前端获取输入富文本框的html内容 改造保存接口, ...