算法实现题8-3 最小路径覆盖问题(习题8-13)

´问题描述:

给定有向图G=(V,E)。设P是G的一个简单路(顶点不相交)的集合。如果V中每个
顶点恰好在P的一条路上,则称P是G的一个路径覆盖。P中路径可以从V的任何一个顶
点开始,长度也是任意的,特别地,可以为0。G的最小路径覆盖是G的所含路径条数最少
的路径覆盖。
设计一个有效算法求一个有向无环图G的最小路径覆盖。

提示:

设V={1,2,...  ,n},构造网络G1=(V1,E1)如下:


每条边的容量均为1。求网络G1的(x0,y0)最大流。

´编程任务:

对于给定的给定有向无环图G,编程找出G的一个最小路径覆盖。

´数据输入:

由文件input.txt提供输入数据。文件第1行有2个正整数n和m。n是给定有向无环图
G的顶点数,m是G的边数。接下来的m行,每行有2个正整数i 和j,表示一条有向边(i,j)。

´结果输出:

程序运行结束时,将最小路径覆盖输出到文件output.txt中。从第1行开始,每行输出

一条路径。文件的最后一行是最少路径数。

输入文件示例

input.txt

11 12
1 2
1 3
1 4
2 5
3 6
4 7
5 8
6 9
7 10
8 11
9 11
10 11

输出文件示例

output.txt

1 4 7 10 11
2 5 8
3 6 9
3

数据范围:

1<=n<=150,1<=m<=6000

二分图匹配裸题,题面里都写了做法了

记录方案的话,多加个DFS看哪条弧被流过了就行

 /*by SilverN*/
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
using namespace std;
const int INF=1e9;
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
struct edge{
int v,nxt,f;
}e[mxn*];
int hd[mxn],mct=;
void add_edge(int u,int v,int w){
e[++mct].v=v;e[mct].nxt=hd[u];e[mct].f=w;hd[u]=mct;return;
}
void insert(int u,int v,int c){
add_edge(u,v,c);add_edge(v,u,);return;
}
int n,m,S,T;
int d[mxn];
bool BFS(){
queue<int>q;
memset(d,,sizeof d);
q.push(S);
d[S]=;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=hd[u];i;i=e[i].nxt){
int v=e[i].v;
if(!d[v] && e[i].f){
d[v]=d[u]+;
q.push(v);
}
}
}
return d[T];
}
int DFS(int u,int lim){
if(u==T)return lim;
int f=,tmp;
for(int i=hd[u];i;i=e[i].nxt){
int v=e[i].v;
if(d[v]==d[u]+ && e[i].f && (tmp=DFS(v,min(lim,e[i].f)))){
f+=tmp;lim-=tmp;
e[i].f-=tmp;
e[i^].f+=tmp;
if(!lim)return f;
}
}
d[u]=;
return f;
}
int Dinic(){
int res=;
while(BFS())res+=DFS(S,INF);
return res;
}
int a[mxn],cnt=;
bool vis[mxn];
void Search(int u){
vis[u]=;
a[++cnt]=u;
for(int i=hd[u];i;i=e[i].nxt){
int v=e[i].v;
if(v==S || v==T)continue;
if(!e[i].f && !vis[v])
Search(v-n);
}
}
int main(){
freopen("path3.in","r",stdin);
freopen("path3.out","w",stdout);
int i,j;
n=read();m=read();
S=;T=n+n+;
for(i=;i<=n;i++){
insert(S,i,);
insert(i+n,T,);
}
int u,v;
for(i=;i<=m;i++){
u=read();v=read();
insert(u,v+n,);
}
int ans=n-Dinic();
for(i=;i<=n;i++){
if(vis[i])continue;
cnt=;
Search(i);
for(j=;j<=cnt;j++)
printf("%d ",a[j]);
printf("\n");
}
printf("%d\n",ans);
return ;
}

COGS728. [网络流24题] 最小路径覆盖问题的更多相关文章

  1. Cogs 728. [网络流24题] 最小路径覆盖问题

    [网络流24题] 最小路径覆盖问题 ★★☆ 输入文件:path3.in 输出文件:path3.out 评测插件 时间限制:1 s 内存限制:128 MB 算法实现题8-3 最小路径覆盖问题(习题8-1 ...

  2. cogs 728. [网络流24题] 最小路径覆盖问题 匈牙利算法

    728. [网络流24题] 最小路径覆盖问题 ★★★☆   输入文件:path3.in   输出文件:path3.out   评测插件时间限制:1 s   内存限制:128 MB 算法实现题8-3 最 ...

  3. 网络流24题 最小路径覆盖(DCOJ8002)

    题目描述 给定有向图 G=(V,E) G = (V, E)G=(V,E).设 P PP 是 G GG 的一个简单路(顶点不相交)的集合.如果 V VV 中每个顶点恰好在 P PP 的一条路上,则称 P ...

  4. P2764 [网络流24题]最小路径覆盖问题[最大流]

    地址 这题有个转化,求最少的链覆盖→即求最少联通块. 设联通块个数$x$个,选的边数$y$,点数$n$个 那么有 $y=n-x$   即  $x=n-y$ 而n是不变的,目标就是在保证每个点入度.出度 ...

  5. 【wikioi】1904 最小路径覆盖问题(最大流+坑人的题+最小路径覆盖)

    http://wikioi.com/problem/1904/ 这题没看数据的话是一个大坑(我已报告官方修复了),答案只要求数量,不用打印路径...orz 最小路径覆盖=n-最大匹配,这个我在说二分图 ...

  6. 【洛谷】4304:[TJOI2013]攻击装置【最大点独立集】【二分图】2172: [国家集训队]部落战争【二分图/网络流】【最小路径覆盖】

    P4304 [TJOI2013]攻击装置 题目描述 给定一个01矩阵,其中你可以在0的位置放置攻击装置. 每一个攻击装置(x,y)都可以按照“日”字攻击其周围的8个位置(x-1,y-2),(x-2,y ...

  7. [Cogs728] [网络流24题#3] 最小路径覆盖 [网络流,最大流,二分图匹配]

    建图:源点—>边的起点(集合1中的)—>边的终点(集合2中的)—>汇点,所有边权均为1, 计算最大流,最后枚举起点的出边,边权为0的即为匹配上的, 可以这样理解:每条边表示起点和终点 ...

  8. LOJ6002 - 「网络流 24 题」最小路径覆盖

    原题链接 Description 求一个DAG的最小路径覆盖,并输出一种方案. Solution 模板题啦~ Code //「网络流 24 题」最小路径覆盖 #include <cstdio&g ...

  9. LibreOJ 6003. 「网络流 24 题」魔术球 贪心或者最小路径覆盖

    6003. 「网络流 24 题」魔术球 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 ...

随机推荐

  1. 用Windows Native API枚举所有句柄及查找文件句柄对应文件名的方法

    枚举所有句柄的方法 由于windows并没有给出枚举所有句柄所用到的API,和进程所拥有的句柄相关的只有GetProcessHandleCount这个函数,然而这个函数只能获取到和进程相关的句柄数,不 ...

  2. 接口的定义——默认加public abstract默认全局常量;与继承不同,子类可以同时实现多个接口;抽象类实现接口;接口继承接口

    一. 接口的定义 接口中定义的方法,全部都为抽象方法,默认加public abstract 接口中定义的变量,全部为全局常量,默认加public static final 二.与继承不同,子类可以同时 ...

  3. 批量ping IP并检测IP延迟率和丢包率脚本

    脚本文件如下: #!/bin/bash #Author:Mr.Ding #Created Time:2018-08-26 07:23:44 #Name:ping.sh #Description: sh ...

  4. php 计算当天凌晨时间戳 以及获取其他常用时间戳

    php 计算当日凌晨时间戳 以及获取其他常用时间戳(持续补充中...) 获取当天凌晨时间戳: echo strtotime(date('Y-m-d')); 以下再列举一些获取其他常用时间戳的方法 获取 ...

  5. Mac远程访问Ubuntu

    MacOS和Ubuntu连接到同一个网络使用ping命令可以通信即可.SSH使用SSH可以很方便的在MacOS上访问Ubuntu,不过只能用命令行操作,相当于连接了Ubuntu的终端. 1. Ubun ...

  6. python之自定义排序函数sorted()

    sorted()也是一个高阶函数,它可以接收一个比较函数来实现自定义排序,比较函数的定义是,传入两个待比较的元素 x, y,如果 x 应该排在 y 的前面,返回 -1,如果 x 应该排在 y 的后面, ...

  7. Python学习笔记:xlrd和xlwt(Excel读写)

    xlrd模块 Python的三方库xlrd用于对excel文件进行读取,可以是“.xls”或“.xlsx”格式(旧版本可能不支持“.xlsx”). 下载安装:https://pypi.org/proj ...

  8. 关于缺失值NaN

    在Pandas中处理NaN值  https://blog.csdn.net/Tyro_java/article/details/81396000

  9. percpu之静态变量

    参考:Linux内核同步机制之(二):Per-CPU变量 CPU私有变量(per-CPU变量) 动态PCPU变量 setup_per_cpu_areas()初始化per-cpu数据. static v ...

  10. virtual 三种用法

    virtual用法一 #include using namespace std;class A{public:     virtual  void  display(){  cout<<& ...