【BZOJ2654】tree
Time Limit: 30 Sec Memory Limit: 512 MB
Description
给你一个无向带权连通图,每条边是黑色或白色。让你求一棵最小权的恰好有need条白色边的生成树。
题目保证有解。
Input
第一行V,E,need分别表示点数,边数和需要的白色边数。
接下来E行,每行s,t,c,col表示这边的端点(点从0开始标号),边权,颜色(0白色1黑色)。
Output
一行表示所求生成树的边权和。
V<=50000,E<=100000,所有数据边权为[1,100]中的正整数。
Sample Input
2 2 1
0 1 1 1
0 1 2 0
Sample Output
2
Solution
乍一看无从下手。可是我完全没有想到那道强化版的题目。
若直接求生成树,我们没办法保证白边的数量符合要求。
如何影响白边的选择?我们尝试对所有白边的权值加上一个偏移值\(d\)。令\(f(d)\)为偏移值为\(d\)被选择的白边数量,可以发现\(f(d)\)随着\(d\)的增长单调不增。这个函数可二分。
于是我们可以二分出当\(f(d)=need\)时\(d\)的值。最小生成树对边进行排序时,对于相同权值的边,我们优先选择白边。令\(g(d)\)为偏移值为\(d\)时最小生成树的权值,则\(ans=g(d)-d*use\),其中\(use\)是最小生成树中白边的数量。
可是\(f(d)\)有可能在\(need\)处不连续,我们会二分到形如\(f(d)>need\)且\(f(d+1)<need\)的情况,二分值夹着答案,怎么办?
注意到我们的对于边的排序方法是若权值相同,白边优先。上述情况可以仔细讨论一下:偏移值为\(d\)时,存在若干条权值相同的黑边和白边,我们优先选择了白边,因而导致\(f(d)>need\),当偏移值为\(d+1\)时,原来的这些黑边和白边被强行分开了,因为白边权值大了一些,排到了后面去,因此我们优先选完了前面的这些黑边,导致了\(f(d)<need\)。
(注意这里讨论的边不会涉及到其他权值的边,因为根据我们的排序,当偏移值+1时只会影响到这些边)
所以如今我们只能强行将偏移值为\(d\)时的一些白边用同权值的黑边来替代。
即\(ans=g(d)-d*f(d)+d*(f(d)-need)=g(d)-d*need\)。
所以二分得到\(d\)为\(f(d)>=need\)的最大值,按上述式子计算即可。
#include <cstdio>
#include <algorithm>
using namespace std;
const int N=50005,M=100005,INF=1000000000;
int n,m,need;
int bl[N];
struct Edge{int u,v,w,c;}e[M];
inline bool cmp(const Edge &a,const Edge &b){
if(a.w!=b.w)
return a.w<b.w;
return a.c<b.c;
}
inline int find(int x){return bl[x]==x?x:(bl[x]=find(bl[x]));}
int MST(int &res){
sort(e+1,e+1+m,cmp);
for(int i=1;i<=n;i++) bl[i]=i;
int sum=0,wsum=0;
res=0;
for(int i=1;i<=m&&sum<n-1;i++){
int u=find(e[i].u),v=find(e[i].v);
if(u==v) continue;
sum++;
wsum+=e[i].w;
bl[u]=v;
res+=e[i].c==0;
}
return wsum;
}
int calc(int delta,int &use){
int tot=0;
for(int i=1;i<=m;i++)
if(e[i].c==0) e[i].w+=delta,tot++;
int res=MST(use);
for(int i=1;i<=m;i++)
if(e[i].c==0) e[i].w-=delta;
return res;
}
int main(){
scanf("%d%d%d",&n,&m,&need);
n++;
for(int i=1;i<=m;i++){
int u,v,w,c;
scanf("%d%d%d%d",&u,&v,&w,&c);
u++; v++;
e[i]=(Edge){u,v,w,c};
}
int l=-110,r=110,mid,use;
while(l<=r){
mid=(l+r)>>1;
calc(mid,use);
if(use>=need) l=mid+1;
else r=mid-1;
}
int ans=calc(r,use);
printf("%d\n",ans-r*need);
return 0;
}
【BZOJ2654】tree的更多相关文章
- 【BZOJ2654】Tree(凸优化,最小生成树)
[BZOJ2654]Tree(凸优化,最小生成树) 题面 BZOJ 洛谷 题解 这道题目是之前\(Apio\)的时候写的,忽然发现自己忘记发博客了... 这个万一就是一个凸优化, 给所有白边二分一个额 ...
- 【BZOJ2654】tree 二分+最小生成树
[BZOJ2654]tree Description 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树. 题目保证有解. Input 第一行V,E,need ...
- 【bzoj2654】 tree
http://www.lydsy.com/JudgeOnline/problem.php?id=2654 (题目链接) 题意 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有nee ...
- 二分+最小生成树【bzoj2654】: tree
2654: tree 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树. 题目保证有解. 二分答案,然后跑最小生成树判断. 注意优先跑白色边. code: ...
- 【bzoj2654】tree 二分+Kruscal
题目描述 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树.题目保证有解. 输入 第一行V,E,need分别表示点数,边数和需要的白色边数. 接下来E行,每 ...
- 【bzoj2654]】tree
给白色边都加上一个值,二分这个值,使得选取的白边数量减少 #include<algorithm> #include<iostream> #include<cstdlib& ...
- 【BZOJ2654】tree(生成树 二分)
题目链接 大意 给你一个无向带权连通图,每条边是黑色或白色,求一棵最小权的恰好有\(Need\)条白色边的生成树. 题目保证有解,输出最小权值. 其中每条边权在\([1,100]\)范围内. 思路 首 ...
- 【POJ3237】Tree 树链剖分+线段树
[POJ3237]Tree Description You are given a tree with N nodes. The tree's nodes are numbered 1 through ...
- 【BZOJ】【2631】Tree
LCT 又一道名字叫做Tree的题目…… 看到删边加边什么的……又是动态树问题……果断再次搬出LCT. 这题比起上道[3282]tree的难点在于需要像线段树维护区间那样,进行树上路径的权值修改&am ...
随机推荐
- [Unity] unity5.3 assetbundle打包及加载
Unity5.3更新了assetbundle的打包和加载api,下面简单介绍使用方法及示例代码. 在Unity中选中一个prefab查看Inspector窗口,有两个位置可以进行assetbundle ...
- vue-scroller实现vue单页面的上拉加载和下拉刷新问题
在vue中如何简单的实现页面的上拉加载和下拉刷新,在这里我推荐使用vue-scrolle插件. vue-scrolle的基本使用方法: 1.下载 npm i vue-scroller -D 2.导包 ...
- 【微服务架构】SpringCloud组件和概念介绍(一)
一:什么是微服务(Microservice) 微服务英文名称Microservice,Microservice架构模式就是将整个Web应用组织为一系列小的Web服务.这些小的Web服务可以独立地编译及 ...
- js数组的比较
如果两个数组元素个数都相等,但排序不同,那么它两个相等吗?结果肯定是否定的.但如果先调用sort()方法进行排序,结果就是true了. console.log(a.sort().toString()= ...
- OpenFastPath(2):原生态Linux Socket应用如何移植到OpenFastPath上?
版本信息: ODP(Open Data Plane): 1.19.0.2 OFP(Open Fast Path): 3.0.0 1.存在的问题 OpenFastPath作为一个开源的用户态TCP/IP ...
- 从零系列--开发npm包(二)
一.利用shell简化组合命令 set -e CVERSION=$(git tag | ) echo "current version:$CVERSION" echo " ...
- 打包应用和构建Docker镜像(docker在windows上)
在构建Docker时编译应用 一般有两种方法在构建镜像时进行打包应用.第一种方法就是使用基本的镜像,该镜像包括应用平台和构建工具,因此在Dockerfile中,复制源代码到镜像中并在构建镜像时编译ap ...
- CS224n-作业1
0 前言 作业1对应的试题 作业1对应的启动代码 作业1主页 1 Softmax(10分) (a)(5分) 对于向量$x+c$的任一维度$i$,有: \begin{align*}\mbox{softm ...
- exec命令详解
基础命令学习目录首页 原文链接: exec: 在bash下输入man exec,找到exec命令解释处,可以看到有”No new process is created.”这样的解释,这就是说exec命 ...
- 详细教你实现BST(二叉排序树)
查找基本分类如下: 线性表的查找 顺序查找 折半查找 分块查找 树表的查找 二叉排序树 平衡二叉树 B树 B+树 散列表的查找 今天介绍二叉排序树. 二叉排序树 ( Binary Sort Tree ...