【BZOJ2654】tree
Time Limit: 30 Sec Memory Limit: 512 MB
Description
给你一个无向带权连通图,每条边是黑色或白色。让你求一棵最小权的恰好有need条白色边的生成树。
题目保证有解。
Input
第一行V,E,need分别表示点数,边数和需要的白色边数。
接下来E行,每行s,t,c,col表示这边的端点(点从0开始标号),边权,颜色(0白色1黑色)。
Output
一行表示所求生成树的边权和。
V<=50000,E<=100000,所有数据边权为[1,100]中的正整数。
Sample Input
2 2 1
0 1 1 1
0 1 2 0
Sample Output
2
Solution
乍一看无从下手。可是我完全没有想到那道强化版的题目。
若直接求生成树,我们没办法保证白边的数量符合要求。
如何影响白边的选择?我们尝试对所有白边的权值加上一个偏移值\(d\)。令\(f(d)\)为偏移值为\(d\)被选择的白边数量,可以发现\(f(d)\)随着\(d\)的增长单调不增。这个函数可二分。
于是我们可以二分出当\(f(d)=need\)时\(d\)的值。最小生成树对边进行排序时,对于相同权值的边,我们优先选择白边。令\(g(d)\)为偏移值为\(d\)时最小生成树的权值,则\(ans=g(d)-d*use\),其中\(use\)是最小生成树中白边的数量。
可是\(f(d)\)有可能在\(need\)处不连续,我们会二分到形如\(f(d)>need\)且\(f(d+1)<need\)的情况,二分值夹着答案,怎么办?
注意到我们的对于边的排序方法是若权值相同,白边优先。上述情况可以仔细讨论一下:偏移值为\(d\)时,存在若干条权值相同的黑边和白边,我们优先选择了白边,因而导致\(f(d)>need\),当偏移值为\(d+1\)时,原来的这些黑边和白边被强行分开了,因为白边权值大了一些,排到了后面去,因此我们优先选完了前面的这些黑边,导致了\(f(d)<need\)。
(注意这里讨论的边不会涉及到其他权值的边,因为根据我们的排序,当偏移值+1时只会影响到这些边)
所以如今我们只能强行将偏移值为\(d\)时的一些白边用同权值的黑边来替代。
即\(ans=g(d)-d*f(d)+d*(f(d)-need)=g(d)-d*need\)。
所以二分得到\(d\)为\(f(d)>=need\)的最大值,按上述式子计算即可。
#include <cstdio>
#include <algorithm>
using namespace std;
const int N=50005,M=100005,INF=1000000000;
int n,m,need;
int bl[N];
struct Edge{int u,v,w,c;}e[M];
inline bool cmp(const Edge &a,const Edge &b){
if(a.w!=b.w)
return a.w<b.w;
return a.c<b.c;
}
inline int find(int x){return bl[x]==x?x:(bl[x]=find(bl[x]));}
int MST(int &res){
sort(e+1,e+1+m,cmp);
for(int i=1;i<=n;i++) bl[i]=i;
int sum=0,wsum=0;
res=0;
for(int i=1;i<=m&&sum<n-1;i++){
int u=find(e[i].u),v=find(e[i].v);
if(u==v) continue;
sum++;
wsum+=e[i].w;
bl[u]=v;
res+=e[i].c==0;
}
return wsum;
}
int calc(int delta,int &use){
int tot=0;
for(int i=1;i<=m;i++)
if(e[i].c==0) e[i].w+=delta,tot++;
int res=MST(use);
for(int i=1;i<=m;i++)
if(e[i].c==0) e[i].w-=delta;
return res;
}
int main(){
scanf("%d%d%d",&n,&m,&need);
n++;
for(int i=1;i<=m;i++){
int u,v,w,c;
scanf("%d%d%d%d",&u,&v,&w,&c);
u++; v++;
e[i]=(Edge){u,v,w,c};
}
int l=-110,r=110,mid,use;
while(l<=r){
mid=(l+r)>>1;
calc(mid,use);
if(use>=need) l=mid+1;
else r=mid-1;
}
int ans=calc(r,use);
printf("%d\n",ans-r*need);
return 0;
}
【BZOJ2654】tree的更多相关文章
- 【BZOJ2654】Tree(凸优化,最小生成树)
[BZOJ2654]Tree(凸优化,最小生成树) 题面 BZOJ 洛谷 题解 这道题目是之前\(Apio\)的时候写的,忽然发现自己忘记发博客了... 这个万一就是一个凸优化, 给所有白边二分一个额 ...
- 【BZOJ2654】tree 二分+最小生成树
[BZOJ2654]tree Description 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树. 题目保证有解. Input 第一行V,E,need ...
- 【bzoj2654】 tree
http://www.lydsy.com/JudgeOnline/problem.php?id=2654 (题目链接) 题意 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有nee ...
- 二分+最小生成树【bzoj2654】: tree
2654: tree 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树. 题目保证有解. 二分答案,然后跑最小生成树判断. 注意优先跑白色边. code: ...
- 【bzoj2654】tree 二分+Kruscal
题目描述 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树.题目保证有解. 输入 第一行V,E,need分别表示点数,边数和需要的白色边数. 接下来E行,每 ...
- 【bzoj2654]】tree
给白色边都加上一个值,二分这个值,使得选取的白边数量减少 #include<algorithm> #include<iostream> #include<cstdlib& ...
- 【BZOJ2654】tree(生成树 二分)
题目链接 大意 给你一个无向带权连通图,每条边是黑色或白色,求一棵最小权的恰好有\(Need\)条白色边的生成树. 题目保证有解,输出最小权值. 其中每条边权在\([1,100]\)范围内. 思路 首 ...
- 【POJ3237】Tree 树链剖分+线段树
[POJ3237]Tree Description You are given a tree with N nodes. The tree's nodes are numbered 1 through ...
- 【BZOJ】【2631】Tree
LCT 又一道名字叫做Tree的题目…… 看到删边加边什么的……又是动态树问题……果断再次搬出LCT. 这题比起上道[3282]tree的难点在于需要像线段树维护区间那样,进行树上路径的权值修改&am ...
随机推荐
- POJ2251-Dungeon Master(3维BFS)
You are trapped in a 3D dungeon and need to find the quickest way out! The dungeon is composed of un ...
- Ruby知识点二:类
1.追查对象是否属于某个类时,使用is_a?方法 追查某个对象属于哪个类时,使用class方法 判断某个对象是否属于某个类时,使用instance_of?方法 判断类是否包含某个模块,使用inclu ...
- 笨办法学Python - 习题3: Numbers and Math
目录 习题 3: 数字和数学计算 算术运算符 加分习题: 我的答案: 总结: 扩展: Python比较运算符 Python赋值运算符 Python位运算符 Python逻辑运算符 Python成员运算 ...
- 服务端模版注入漏洞检测payload整理
服务端模版注入漏洞产生的根源是将用户输入的数据被模版引擎解析渲染可能导致代码执行漏洞 下表涵盖了java,php,python,javascript语言中可能使用到的模版引擎,如果网站存在服务端模版注 ...
- 遇到执行SQL 的参数最大个数
报错: 传入的表格格式数据流(TDS)远程过程调用(RPC)协议流不正确.此 RPC 请求中提供了过多的参数.最多应为 2100. 现象是: SQL 执行的参数过多,超过了 最大值 :2100 个. ...
- js 基础拓展
1.关于 try catch 的用法 <body> <div>请输出一个 5 到 10 之间的数字:</div> <input id="demo&q ...
- TeamWork#3,Week5,Scrum Meeting 11.14
根据最近项目出现的问题,我们明确了需要补充的工作,添加了几项任务. 成员 已完成 待完成 彭林江 由于网站信息更新,正在调整爬虫程序结构 更换爬虫结构 郝倩 由于网站信息更新,正在调整爬虫程序结构 更 ...
- 20162314 《Program Design & Data Structures》Learning Summary Of The Fifth Week
20162314 2017-2018-1 <Program Design & Data Structures>Learning Summary Of The Fifth Week ...
- CS小分队第二阶段冲刺站立会议(6月4日)
昨日成果:昨天一直在对主界面进行修改,遇到问题没有进展 遇到的问题:我代码写的不够缜密,各按钮信息添加的删除的时候总是有重名或者覆盖现象,需要有一次大的检查 今日计划:冲刺已经结束,项目的难度超过了预 ...
- Go Going软件需求规格说明书
1.目标是什么,目标不包括什么? 我们软件的目标是让大学生走出校园,用最小的花费到更多的地方去,开阔视野,读万卷书再行万里路. 目标暂且不包括外校学生 2.用户和典型场景是什么? 用户:在校大学生 典 ...