本篇讲的是SVM与logistic regression的关系。

(一) SVM算法概论

首先我们从头梳理一下SVM(一般情况下,SVM指的是soft-margin SVM)这个算法。

这个算法要实现的最优化目标是什么?我们知道这个目标必然与error measurement有关。

那么,在SVM中,何如衡量error的?也即:在SVM中ε具体代表着什么?

SVM的目标是最小化上式。我们用来衡量error。这个式子是不是有点眼熟?我们在regularzation一篇中,最小化的目标也是如此形式。但是两者的思路不同:对于regularization,我们的目标是最小化error,但是呢,我们也希望对|w|的长度有限制;

对于SVM,我们的目标是最小化|w|,但是呢,我们也希望对error有所限制。

具体哪一方面占的权重更大,对于regularization来说,可以用λ来调节;对于SVM来说,可以用C来调节。

总体来说,殊途同归,但是使用SVM方法,即使是如上的nonlinear error衡量方式,我们也可以用QP工具来解决;第二,我们可以使用kernel function工具

具体来说其误差衡量方式与0/1 error相比:

我们发现:这种误差衡量方式也是0/1误差的一种upper bound。之前我们在哪里见识过类似的场景?squared error 和cross-entropy error。

我们可以看到:SVM的错误衡量方式与cross-entropy error的值相似。所以我们说 SVM ≈ L2-regularized logistic regression。

(二)probabilistic SVM

如何融合SVM和logistic regression?

我也不知道为什么要将SVM与logistic regression联系起来。logistic regression与SVM相比,有什么优点?是极大似然?直接使用SVM不好吗?

这两种方法都不好,没有吸收两种方法的好处。

(三)kernel logistic regression

假设我们融合logistic regression与SVM,主要是要在logistic regression中使用SVM的kernel function工具。那么,现在的问题是:能不能直接做kernel logistic regression?

首先明白一点:要想使用kernel trick,必然有:w可以由n个数据来表示。也即:optimal w can be represented by zn

什么使用这一情况会得到满足?

由此,我们可以做kernel logistic regression:

Probabilistic SVM 与 Kernel Logistic Regression(KLR)的更多相关文章

  1. 机器学习技法:05 Kernel Logistic Regression

    Roadmap Soft-Margin SVM as Regularized Model SVM versus Logistic Regression SVM for Soft Binary Clas ...

  2. 机器学习技法笔记:05 Kernel Logistic Regression

    Roadmap Soft-Margin SVM as Regularized Model SVM versus Logistic Regression SVM for Soft Binary Clas ...

  3. 【Kernel Logistic Regression】林轩田机器学习技术

    最近求职真慌,一方面要看机器学习,一方面还刷代码.还是静下心继续看看课程,因为觉得实在讲的太好了.能求啥样搬砖工作就随缘吧. 这节课的核心就在如何把kernel trick到logistic regr ...

  4. SVM: 相对于logistic regression而言SVM的 cost function与hypothesis

    很多学习算法的性能都差不多,关键不是使用哪种学习算法,而是你能得到多少数据量和应用这些学习算法的技巧(如选择什么特征向量,如何选择正则化参数等) SVM在解决非线性问题上提供了强大的方法. logis ...

  5. support vector regression与 kernel ridge regression

    前一篇,我们将SVM与logistic regression联系起来,这一次我们将SVM与ridge regression(之前的linear regression)联系起来. (一)kernel r ...

  6. Logistic Regression vs Decision Trees vs SVM: Part II

    This is the 2nd part of the series. Read the first part here: Logistic Regression Vs Decision Trees ...

  7. Logistic Regression Vs Decision Trees Vs SVM: Part I

    Classification is one of the major problems that we solve while working on standard business problem ...

  8. logistic regression与SVM

    Logistic模型和SVM都是用于二分类,现在大概说一下两者的区别 ① 寻找最优超平面的方法不同 形象点说,Logistic模型找的那个超平面,是尽量让所有点都远离它,而SVM寻找的那个超平面,是只 ...

  9. More 3D Graphics (rgl) for Classification with Local Logistic Regression and Kernel Density Estimates (from The Elements of Statistical Learning)(转)

    This post builds on a previous post, but can be read and understood independently. As part of my cou ...

随机推荐

  1. 【mongoDB中级篇②】索引与expain

    索引的操作 数据库百分之八十的工作基本上都是查询,而索引能帮我们更快的查询到想要的数据.但是其降低了数据的写入速度,所以要权衡常用的查询字段,不必在太多字段上建立索引. 在mongoDB中默认是用bt ...

  2. NPOI基础入门(旧版本)

    1.常用的类与方法 工作本HSSFWorkbook 构造方法,无参表示创建一个新的工作本,可以接收一个流用于打开一个现有的工作本 方法CreateSheet(索引):创建指定索引的sheet对象 方法 ...

  3. PL/SQL-Thread creation error:存储空间不足,无法处理此命令

    PL/SQL中执行SQL语句,提示“Thread creation error:存储空间不足,无法处理此命令”.查找了解决方案,如下: 1. 单击开始,然后单击运行. 2. 键入 regedit,然后 ...

  4. tomcat version

    Tomcat version 6.0 only supports J2EE 1.2, 1.3, 1.4, and Java EE 5 Web modules   转自:http://jingwang0 ...

  5. 神经网络第三部分:网络Neural Networks, Part 3: The Network

    NEURAL NETWORKS, PART 3: THE NETWORK We have learned about individual neurons in the previous sectio ...

  6. getpeername

    定义: int getpeername(int s, struct sockaddr *name, socklen_t *namelen); 描述: 获取socket的对方地址   得到对方的地址 s ...

  7. apk反编译(4)Smali代码注入

    转自 : http://blog.sina.com.cn/s/blog_5674d18801019i89.html 应用场景 Smali代码注入只能应对函数级别的移植,对于类级别的移植是无能为力的.具 ...

  8. jquery在线教程

    http://www.runoob.com/jquery/jquery-slide.htmlhttp://www.w3school.com.cn/jquery/http://www.phpstudy. ...

  9. sdut 2351 In Danger (找规律)

    题目:http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2351 题意:xyez, xy表示一个十进 ...

  10. Android中View转换为Bitmap及getDrawingCache=null的解决方法

    1.前言 Android中经常会遇到把View转换为Bitmap的情形,比如,对整个屏幕视图进行截屏并生成图片:Coverflow中需要把一页一 页的view转换为Bitmap.以便实现复杂的图形效果 ...