一、Partitioner介绍

Partitioner的作用是对Mapper产生的中间结果进行分片,以便将同一分组的数据交给同一个Reduce处理,它直接影响Reduce阶段的负载均衡(个人理解:就是按照Reduce的个数,将Mapper产生的中间结果按照关键字送给不同的Reduce,Reduce对相同关键字的数据进行处理)。

Partitioner在Map/Reduce中所处的位置,如下:

二、Partitioner的源代码解析

将相同关键字Key送到哪个Reduce上处理。

 public abstract class Partitioner<KEY, VALUE> {

   /**
* Get the partition number for a given key (hence record) given the total
* number of partitions i.e. number of reduce-tasks for the job.
* 通过给定总的分区数(即一般为Reduce的个数),获得每个关键字Key所对应的分区(所对应的Reduce上)。
* <p>Typically a hash function on a all or a subset of the key.</p>
*
* @param key the key to be partioned. 关键字
* @param value the entry value.
* @param numPartitions the total number of partitions. 一般是Reduce的个数
* @return the partition number for the <code>key</code>. 哪个Reduce
*/
public abstract int getPartition(KEY key, VALUE value, int numPartitions); }

三、常用的Partitioner方法

1、HashPartitioner

HashPartitioner是MapReduce中Partitioner的默认实现。他是基于哈希值的分片方法。实现如下:

 public class HashPartitioner<K, V> extends Partitioner<K, V> {

     /** Use {@link Object#hashCode()} to partition.
* key.hashCode()得到关键字Key的哈希值,numReduceTasks为Reduce的个数
* 这样可以将相同关键字Key的所有数据送给哪个Reduce
**/
public int getPartition(K key, V value, int numReduceTasks) {
return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;
} }

2、TotalOrderPartitioner

TotalOrderPartitioner是基于区间的分片方法,通常用在全排序中。

Map/Reduce之间的Partitioner接口的更多相关文章

  1. map/reduce之间的shuffle,partition,combiner过程的详解

    Shuffle的本意是洗牌.混乱的意思,类似于java中的Collections.shuffle(List)方法,它会随机地打乱参数list里的元素顺序.MapReduce中的Shuffle过程.所谓 ...

  2. MapReduce在Map端的Combiner和在Reduce端的Partitioner

    1.Map端的Combiner. 通过单词计数WordCountApp.java的例子,如何在Map端设置Combiner... 只附录部分代码: /** * 以文本 * hello you * he ...

  3. 分布式基础学习(2)分布式计算系统(Map/Reduce)

    二. 分布式计算(Map/Reduce) 分 布式式计算,同样是一个宽泛的概念,在这里,它狭义的指代,按Google Map/Reduce框架所设计的分布式框架.在Hadoop中,分布式文件 系统,很 ...

  4. Hadoop Map/Reduce教程

    原文地址:http://hadoop.apache.org/docs/r1.0.4/cn/mapred_tutorial.html 目的 先决条件 概述 输入与输出 例子:WordCount v1.0 ...

  5. hadoop学习WordCount+Block+Split+Shuffle+Map+Reduce技术详解

    转自:http://blog.csdn.net/yczws1/article/details/21899007 纯干货:通过WourdCount程序示例:详细讲解MapReduce之Block+Spl ...

  6. 分布式基础学习【二】 —— 分布式计算系统(Map/Reduce)

    二. 分布式计算(Map/Reduce) 分布式式计算,同样是一个宽泛的概念,在这里,它狭义的指代,按Google Map/Reduce框架所设计的分布式框架.在Hadoop中,分布式文件系统,很大程 ...

  7. Map/Reduce应用开发基础知识-摘录

    Map/Reduce 这部分文档为用户将会面临的Map/Reduce框架中的各个环节提供了适当的细节.这应该会帮助用户更细粒度地去实现.配置和调优作业.然而,请注意每个类/接口的javadoc文档提供 ...

  8. 一步一步跟我学习hadoop(5)----hadoop Map/Reduce教程(2)

    Map/Reduce用户界面 本节为用户採用框架要面对的各个环节提供了具体的描写叙述,旨在与帮助用户对实现.配置和调优进行具体的设置.然而,开发时候还是要相应着API进行相关操作. 首先我们须要了解M ...

  9. map reduce

    作者:Coldwings链接:https://www.zhihu.com/question/29936822/answer/48586327来源:知乎著作权归作者所有,转载请联系作者获得授权. 简单的 ...

随机推荐

  1. hdu 3923 Invoker

    完全是套用polya模版…… ;}

  2. lintcode :Remove Duplicates from Sorted Array 删除排序数组中的重复数字

    题目: 删除排序数组中的重复数字 给定一个排序数组,在原数组中删除重复出现的数字,使得每个元素只出现一次,并且返回新的数组的长度. 不要使用额外的数组空间,必须在原地没有额外空间的条件下完成.  样例 ...

  3. *[topcoder]TaroFriends

    http://community.topcoder.com/stat?c=problem_statement&pm=13005 好题.最暴力是试验2^n种跳法.然后有从结果入手,那么最终的左右 ...

  4. 《HTTP权威指南》笔记

    http://blog.csdn.net/sunorry?viewmode=contents有些笔记 MIME 类型是一种文本标记,表示一种主要的对象类型和一个特定的子类型,中间由一条斜杠来分隔:te ...

  5. Python中的SET集合操作

    python的set和其他语言类似, 是一个无序不重复元素集, 基本功能包括关系测试和消除重复元素. 集合对象还支持union(联合), intersection(交), difference(差)和 ...

  6. AC题目简解-线段树

    线段树: http://www.notonlysuccess.com/index.php/segment-tree-complete/鉴于notonlysuccess大牛的博客对于题目的思路写的很简陋 ...

  7. HTTP长连接实现“服务器推”的技术

    HTTP长连接实现“服务器推”的技术快速入门及演示示例 在我的印象里HTTP是一种“无状态的协议”,也就是不知道以前请求的历史,无法保留上一次请求的结果.Cookie的诞生,弥补了这个不足,浏览器可以 ...

  8. C++:虚函数的引入

    5.4虚函数5.4.1 虚函数的引入 //例5.19 虚函数的引例 #include<iostream> using namespace std; class MyBase{ //声明基类 ...

  9. [51NOD1105]第k大的数(二分答案)

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1105 先排序,二分上下界分别是最小的两个数和最大的两个数的乘积 ...

  10. n人比赛,可轮空,比赛轮数和场数

    #include<stdio.h> int chang(int x,int s){ ) return s; ) ; !=){ s+=(x-)/; )/,s); } else{ s+=x/; ...