P2371 [国家集训队]墨墨的等式
膜意义下最短路。
把最小的\(a\)抠出来,作为模数\(mod\),然后建点编号为\(0\)到\(mod-1\),对每个数\(a\)连边\((i,(a+i)\mod mod)\)点\(i\)的最短路就是凑出对\(mod\)取膜为\(i\)的最小数
然后随便统计一下
注意判掉0
// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define il inline
#define vd void
typedef long long ll;
il int gi(){
int x=0,f=1;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-')f=-1;
ch=getchar();
}
while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
return x*f;
}
int fir[500010],dis[10000010],nxt[10000010],w[10000010],id;
il vd link(int a,int b,int c){nxt[++id]=fir[a],fir[a]=id,dis[id]=b,w[id]=c;}
int a[500010];
ll dist[500010];bool vis[500010];
std::priority_queue<std::pair<ll,int> >que;
int main(){
#ifndef ONLINE_JUDGE
freopen("in.in","r",stdin);
freopen("out.out","w",stdout);
#endif
int n=gi();ll Bl,Br;scanf("%lld%lld",&Bl,&Br);
int mod=1e9;
for(int i=1;i<=n;++i){a[i]=gi();if(a[i])mod=std::min(mod,a[i]);}
for(int i=1;i<=n;++i)
for(int j=0;j<mod;++j)
link(j,(j+a[i])%mod,a[i]);
memset(dist,63,sizeof dist);
dist[0]=0;que.push(std::make_pair(0,0));
while(!que.empty()){
int x=que.top().second;vis[x]=1;
for(int i=fir[x];i;i=nxt[i])
if(dist[dis[i]]>dist[x]+w[i]){
dist[dis[i]]=dist[x]+w[i];
que.push(std::make_pair(-dist[dis[i]],dis[i]));
}
while(!que.empty()&&vis[que.top().second])que.pop();
}
ll ans=0;
--Bl;
for(int i=0;i<mod;++i)if(dist[i]!=dist[mod]&&dist[i]<=Bl)ans-=(Bl-i)/mod-(dist[i]-i-1)/mod;
for(int i=0;i<mod;++i)if(dist[i]!=dist[mod]&&dist[i]<=Br)ans+=(Br-i)/mod-(dist[i]-i-1)/mod;
printf("%lld\n",ans);
return 0;
}
P2371 [国家集训队]墨墨的等式的更多相关文章
- 洛谷P2371 [国家集训队]墨墨的等式
P2371 [国家集训队]墨墨的等式 题目描述 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+-+anxn=Ba_1x_1+a_2y_2+-+a_nx_n=Ba1x1+a2y2+-+a ...
- 【洛谷】P2371 [国家集训队]墨墨的等式(屠版题)
先讲讲曲折的思路吧...... 首先,应该是CRT之类的东西,乱搞 不行......打了打草稿,发现有解的情况是gcd(a1,a2.....an)|B,于是可以求gcd然后O(n)查询?但是B的范围直 ...
- 【同余最短路】【例题集合】洛谷P3403 跳楼机/P2371 墨墨的等式
接触到的新内容,[同余最短路]. 代码很好写,但思路不好理解. 同余最短路,并不是用同余来跑最短路,而是通过同余来构造某些状态,从而达到优化时间空间复杂度的目的.往往这些状态就是最短路中的点,可以类比 ...
- 【bzoj2118&洛谷P2371】墨墨的等式(最短路神仙题)
题目传送门:bzoj2118 洛谷P2371 这道题看了题解后才会的..果然是国家集训队的神仙题,思维独特. 首先若方程$ \sum_{i=1}^{n}a_ix_i=k $有非负整数解,那么显然对于每 ...
- p2371&bzoj2118 墨墨的等式
传送门(bzoj) 题目 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存 ...
- BZOJ2118墨墨的等式[数论 最短路建模]
2118: 墨墨的等式 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1317 Solved: 504[Submit][Status][Discus ...
- Bzoj2118 墨墨的等式
Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1488 Solved: 578 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+ ...
- 数论+spfa算法 bzoj 2118 墨墨的等式
2118: 墨墨的等式 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1283 Solved: 496 Description 墨墨突然对等式很感兴 ...
- bzoj 2118: 墨墨的等式
Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+-+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...
随机推荐
- Git创建本地仓库并推送至远程仓库
作为一名测试同学,日常工作经常需要checkout研发代码进行code review.自己极少有机会创建仓库,一度以为这是一个非常复杂过程.操作一遍后,发现也不过六个步骤,so,让我们一起揭开这神秘面 ...
- VMWare12虚拟机实现主客机间的文件拖拽(复制粘贴)和文件夹共享
版本: 主机:Windows 7 64位旗舰版 虚拟机: VMWare 12 + Windows 7 64位旗舰版 VMWare pro 12 + Ubuntu16.04LTS 64位 注:由于VMW ...
- sh: ./bin/my_print_defaults: /lib/ld-linux.so.2: bad ELF interpreter: 没有那个文件或目录 FATAL ERROR: Neither host 'kvm' nor 'localhost' could be looked up with ./bin/resolveip Please configure the 'hostname'
初始化数据库报错: sh: ./bin/my_print_defaults: /lib/ld-linux.so.2: bad ELF interpreter: 没有那个文件或目录FATAL ERROR ...
- Coursera-AndrewNg(吴恩达)机器学习笔记——第四周
神经网络 1.神经网络发展的动力:在逻辑回归解决复杂的分类问题时,我们使用属性的一些组合来构造新的属性(x12,x1x2,x22...),这样就会造成属性的数目n过多,带来了大量的运算,甚至造成过拟合 ...
- tomcat8.5 Host-Manager配置访问的方法
1. 安装配置tomcat服务器,浏览器输入 localhost:8080,可正常访问主页,但访问localhost:8080/host-manager, localhost:8080/manager ...
- 常用vimrc记录
记录下vim 的一些常用配置.每当换到一台新电脑的时候,使用vim的时候,缩进等各种方式都不友好.每次都要到互联网上去找,还要找半天,这篇博客,记录下我常用的vim配置,以及扩展,能够快速的配置开发环 ...
- sysbench压力工具报错:
[root@ sysbench-]# /usr/local/sysbench/bin/sysbench --version : cannot open shared object file: No s ...
- MySQL数据库的安装与基本操作
实验要求: 1.安装mysql源码包,并做相关的配置和优化路径,启动服务. 步骤: 1)先查询MySQL软件的安装情况,如果有建议将其卸载, 2)安装光盘自带的ncurses-devel包. 3)My ...
- C++进阶书籍(转)
推荐的阅读顺序:level 1从<<essential c++>>开始,短小精悍,可以对c++能进一步了解其特性以<<c++ primer>>作字典和课 ...
- MPT树详解
目录 MPT树定义 MPT树的作用是什么? 前缀树与默克尔树 前缀树 默克尔树 三种节点类型 MPT中的Merkle HP编码 官方表示形式 相关MPT树 参考目录 @ MPT树定义 一种经过改良的. ...