主题链接:

pid=2454">http://acm.hdu.edu.cn/showproblem.php?pid=2454

Problem Description
Wang Haiyang is a strong and optimistic Chinese youngster. Although born and brought up in the northern inland city Harbin, he has deep love and yearns for the boundless oceans. After graduation, he came to a coastal city and got a job in a marine transportation
company. There, he held a position as a navigator in a freighter and began his new life.



The cargo vessel, Wang Haiyang worked on, sails among 6 ports between which exist 9 routes. At the first sight of his navigation chart, the 6 ports and 9 routes on it reminded him of Graph Theory that he studied in class at university. In the way that Leonhard
Euler solved The Seven Bridges of Knoigsberg, Wang Haiyang regarded the navigation chart as a graph of Graph Theory. He considered the 6 ports as 6 nodes and 9 routes as 9 edges of the graph. The graph is illustrated as below.



 



According to Graph Theory, the number of edges related to a node is defined as Degree number of this node.



Wang Haiyang looked at the graph and thought, If arranged, the Degree numbers of all nodes of graph G can form such a sequence: 4, 4, 3,3,2,2, which is called the degree sequence of the graph. Of course, the degree sequence of any simple graph (according to
Graph Theory, a graph without any parallel edge or ring is a simple graph) is a non-negative integer sequence?



Wang Haiyang is a thoughtful person and tends to think deeply over any scientific problem that grabs his interest. So as usual, he also gave this problem further thought, As we know, any a simple graph always corresponds with a non-negative integer sequence.
But whether a non-negative integer sequence always corresponds with the degree sequence of a simple graph? That is, if given a non-negative integer sequence, are we sure that we can draw a simple graph according to it.?



Let's put forward such a definition: provided that a non-negative integer sequence is the degree sequence of a graph without any parallel edge or ring, that is, a simple graph, the sequence is draw-possible, otherwise, non-draw-possible. Now the problem faced
with Wang Haiyang is how to test whether a non-negative integer sequence is draw-possible or not. Since Wang Haiyang hasn't studied Algorithm Design course, it is difficult for him to solve such a problem. Can you help him?


 
Input
The first line of input contains an integer T, indicates the number of test cases. In each case, there are n+1 numbers; first is an integer n (n<1000), which indicates there are n integers in the sequence; then follow n integers, which indicate the numbers
of the degree sequence.


 
Output
For each case, the answer should be "yes"or "no" indicating this case is "draw-possible" or "non-draw-possible"


 
Sample Input
2
6 4 4 3 3 2 2
4 2 1 1 1
 
Sample Output
yes
no
 
Source

题意:

给出一个图的每个点的度数,求是否能构成一个简单图。

PS:

Havel定理:http://baike.baidu.com/view/8698382.htm?

fr=aladdin

给定一个非负整数序列{dn},若存在一个无向图使得图中各点的度与此序列一一相应,则称此序列可图化。进一步。若图为简单图,则称此序列可简单图化
可图化的判定:d1+d2+……dn=0(mod 2)。

关于详细图的构造,我们能够简单地把奇数度的点配对,剩下的所有搞成自环。

可简单图化的判定(Havel定理):把序列排成不增序,即d1>=d2>=……>=dn,则d可简单图化当且仅当d’={d2-1,d3-1。……d(d1+1)-1, d(d1+2)。d(d1+3),……dn}可简单图化。简单的说,把d排序后,找出度最大的点(设度为d1),把它与度次大的d1个点之间连边,然后这个点就能够无论了。一直继续这个过程。直到建出完整的图。或出现负度等明显不合理的情况。

代码例如以下:

#include<cstdio>
#include<algorithm>
using namespace std;
bool cmp(int a,int b)
{
return a>b;
}
int main()
{
int t,n,i,j;
int a[1010];
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
int sum = 0;
for(i=0; i<n; i++)
{
scanf("%d",&a[i]);
sum+=a[i];
}
if(sum%2)
{
printf("no\n");
continue;
}
for(i=0; i<n; i++)
{
if(a[i]>=n)
break;
}
if(i<n)
{
printf("no\n");
continue;
}
int flag = 0;
for(i=0; i<n; i++)
{
int cnt=0;
sort(a,a+n,cmp);
for(j=1; j<n; j++)
{
if(cnt==a[0])
break;
a[j]--;
cnt++;
if(a[j] < 0)
{
flag = 1;
break;
}
}
if(flag)
break;
if(cnt==0)
break;
a[0]-=cnt;
}
for(i=0; i<n; i++)
{
//printf("%d ",a[i]);
if(a[i])
break;
}
//printf("\n");
if(i<n || flag)
printf("no\n");
else
printf("yes\n");
}
return 0;
} /*
4
4 3 2 1 1
*/

版权声明:本文博客原创文章,博客,未经同意,不得转载。

HDU 2454 Degree Sequence of Graph G(Havel定理 推断一个简单图的存在)的更多相关文章

  1. hdu 2454 Degree Sequence of Graph G (推断简单图)

    ///已知各点的度,推断是否为一个简单图 #include<stdio.h> #include<algorithm> #include<string.h> usin ...

  2. HDU 2454"Degree Sequence of Graph G"(度序列可图性判断)

    传送门 参考资料: [1]:图论-度序列可图性判断(Havel-Hakimi定理) •题意 给你 n 个非负整数列,判断这个序列是否为可简单图化的: •知识支持 握手定理:在任何无向图中,所有顶点的度 ...

  3. HDU 2454 Degree Sequence of Graph G——可简单图化&&Heavel定理

    题意 给你一个度序列,问能否构成一个简单图. 分析 对于可图化,只要满足度数之和是偶数,即满足握手定理. 对于可简单图化,就是Heavel定理了. Heavel定理:把度序列排成不增序,即 $deg[ ...

  4. hdu 2454 Degree Sequence of Graph G(可简单图化判定)

    传送门 •Havel-Hakimi定理: 给定一个非负整数序列{d1,d2,...dn},若存在一个无向图使得图中各点的度与此序列一一对应,则称此序列可图化. 进一步,若图为简单图,则称此序列可简单图 ...

  5. Hdoj 2454.Degree Sequence of Graph G 题解

    Problem Description Wang Haiyang is a strong and optimistic Chinese youngster. Although born and bro ...

  6. 【Havel 定理】Degree Sequence of Graph G

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=2454 [别人博客粘贴过来的] 博客地址:https://www.cnblogs.com/debug ...

  7. cdoj913-握手 【Havel定理】

    http://acm.uestc.edu.cn/#/problem/show/913 握手 Time Limit: 2000/1000MS (Java/Others)     Memory Limit ...

  8. 2013长沙 G Graph Reconstruction (Havel-Hakimi定理)

    Graph Reconstruction Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge Let there ...

  9. HDU 1560 DNA sequence(DNA序列)

    HDU 1560 DNA sequence(DNA序列) Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K  ...

随机推荐

  1. Java学习文件夹

    每天进步一点点,先研究一门语言深入研究下去.

  2. js实现页面重定位的几种方法

    参考地址:http://www.cnblogs.com/super-d2/archive/2011/10/01/2197004.html js实现页面重定向 在现行的网站应用中URL重定向的应用有很多 ...

  3. mysql 开放的telnet

    两步开幕mysql远程连接 一个,登录mysql # mysql -uroot -p 两,配置远程连接 mysql > GRANT ALL PRIVILEGES ON *.* TO 'user1 ...

  4. cocos2dx移植android平台

    本人这几天一直都没有跟新自己的网站内容,问我干什么去了,当然是做这篇文章做的事了,说起这个移植来真是麻烦啊,网上试验了各种方法,都不知道谁对谁错啊.不过经过本人这三天的研究最后终于成功了,为了让大家少 ...

  5. 学了Java 你未必知道这些

    作为一个正奔跑向编程完美天堂的朝圣者,本人觉得在平常的编程中,应该要做到以下几点: 一:汝应注释,这样做既方便别人,也方便自己去读懂代码的逻辑 二:注重细节,为自己写的每行代码负责,比如,在并发编程的 ...

  6. 聊天demo SignalR

    1首先这个demo是针对 net版本是4.5的  SignalR   获取的是2.2的 2新建一个mvc项目 3  Nuget  搜索 SignalR   安装如图的一项 4新建一个 集线器类 修改新 ...

  7. 深入理解java虚拟机系列(一):java内存区域与内存溢出异常

    文章主要是阅读<深入理解java虚拟机:JVM高级特性与最佳实践>第二章:Java内存区域与内存溢出异常 的一些笔记以及概括. 好了開始.假设有什么错误或者遗漏,欢迎指出. 一.概述 先上 ...

  8. 2012天津C题

    行李箱上的密码锁大家都知道, 现在给我们长度为n(n<=1000)的两个密码串,每次可以转动连续的1->3个字符1格,问最少多少次可以使得第一个串变成第二个串 经历了搜索,贪心,的思路后, ...

  9. Red Gate系列之八 SQL Connect 1.1.1.19 Edition 数据库连接及操作工具 完全破解+使用教程

    原文:Red Gate系列之八 SQL Connect 1.1.1.19 Edition 数据库连接及操作工具 完全破解+使用教程 Red Gate系列之八 SQL Connect 1.1.1.19 ...

  10. 即时编译和打包您的 Groovy 脚本(转)

    在本文中将会涉及到: 使用 CliBuilder 来实现对命令行选项的支持,脚本执行时所需要的参数将通过命令行选项的方式传递. 使用 GroovyClassLoader 加载 Groovy class ...