HDU 2454 Degree Sequence of Graph G(Havel定理 推断一个简单图的存在)
主题链接: pid=2454">http://acm.hdu.edu.cn/showproblem.php?pid=2454
company. There, he held a position as a navigator in a freighter and began his new life.
The cargo vessel, Wang Haiyang worked on, sails among 6 ports between which exist 9 routes. At the first sight of his navigation chart, the 6 ports and 9 routes on it reminded him of Graph Theory that he studied in class at university. In the way that Leonhard
Euler solved The Seven Bridges of Knoigsberg, Wang Haiyang regarded the navigation chart as a graph of Graph Theory. He considered the 6 ports as 6 nodes and 9 routes as 9 edges of the graph. The graph is illustrated as below.

According to Graph Theory, the number of edges related to a node is defined as Degree number of this node.
Wang Haiyang looked at the graph and thought, If arranged, the Degree numbers of all nodes of graph G can form such a sequence: 4, 4, 3,3,2,2, which is called the degree sequence of the graph. Of course, the degree sequence of any simple graph (according to
Graph Theory, a graph without any parallel edge or ring is a simple graph) is a non-negative integer sequence?
Wang Haiyang is a thoughtful person and tends to think deeply over any scientific problem that grabs his interest. So as usual, he also gave this problem further thought, As we know, any a simple graph always corresponds with a non-negative integer sequence.
But whether a non-negative integer sequence always corresponds with the degree sequence of a simple graph? That is, if given a non-negative integer sequence, are we sure that we can draw a simple graph according to it.?
Let's put forward such a definition: provided that a non-negative integer sequence is the degree sequence of a graph without any parallel edge or ring, that is, a simple graph, the sequence is draw-possible, otherwise, non-draw-possible. Now the problem faced
with Wang Haiyang is how to test whether a non-negative integer sequence is draw-possible or not. Since Wang Haiyang hasn't studied Algorithm Design course, it is difficult for him to solve such a problem. Can you help him?
of the degree sequence.
2
6 4 4 3 3 2 2
4 2 1 1 1
yes
no
题意:
给出一个图的每个点的度数,求是否能构成一个简单图。
PS:
Havel定理:http://baike.baidu.com/view/8698382.htm?
fr=aladdin
关于详细图的构造,我们能够简单地把奇数度的点配对,剩下的所有搞成自环。
代码例如以下:
#include<cstdio>
#include<algorithm>
using namespace std;
bool cmp(int a,int b)
{
return a>b;
}
int main()
{
int t,n,i,j;
int a[1010];
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
int sum = 0;
for(i=0; i<n; i++)
{
scanf("%d",&a[i]);
sum+=a[i];
}
if(sum%2)
{
printf("no\n");
continue;
}
for(i=0; i<n; i++)
{
if(a[i]>=n)
break;
}
if(i<n)
{
printf("no\n");
continue;
}
int flag = 0;
for(i=0; i<n; i++)
{
int cnt=0;
sort(a,a+n,cmp);
for(j=1; j<n; j++)
{
if(cnt==a[0])
break;
a[j]--;
cnt++;
if(a[j] < 0)
{
flag = 1;
break;
}
}
if(flag)
break;
if(cnt==0)
break;
a[0]-=cnt;
}
for(i=0; i<n; i++)
{
//printf("%d ",a[i]);
if(a[i])
break;
}
//printf("\n");
if(i<n || flag)
printf("no\n");
else
printf("yes\n");
}
return 0;
} /*
4
4 3 2 1 1
*/
版权声明:本文博客原创文章,博客,未经同意,不得转载。
HDU 2454 Degree Sequence of Graph G(Havel定理 推断一个简单图的存在)的更多相关文章
- hdu 2454 Degree Sequence of Graph G (推断简单图)
///已知各点的度,推断是否为一个简单图 #include<stdio.h> #include<algorithm> #include<string.h> usin ...
- HDU 2454"Degree Sequence of Graph G"(度序列可图性判断)
传送门 参考资料: [1]:图论-度序列可图性判断(Havel-Hakimi定理) •题意 给你 n 个非负整数列,判断这个序列是否为可简单图化的: •知识支持 握手定理:在任何无向图中,所有顶点的度 ...
- HDU 2454 Degree Sequence of Graph G——可简单图化&&Heavel定理
题意 给你一个度序列,问能否构成一个简单图. 分析 对于可图化,只要满足度数之和是偶数,即满足握手定理. 对于可简单图化,就是Heavel定理了. Heavel定理:把度序列排成不增序,即 $deg[ ...
- hdu 2454 Degree Sequence of Graph G(可简单图化判定)
传送门 •Havel-Hakimi定理: 给定一个非负整数序列{d1,d2,...dn},若存在一个无向图使得图中各点的度与此序列一一对应,则称此序列可图化. 进一步,若图为简单图,则称此序列可简单图 ...
- Hdoj 2454.Degree Sequence of Graph G 题解
Problem Description Wang Haiyang is a strong and optimistic Chinese youngster. Although born and bro ...
- 【Havel 定理】Degree Sequence of Graph G
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=2454 [别人博客粘贴过来的] 博客地址:https://www.cnblogs.com/debug ...
- cdoj913-握手 【Havel定理】
http://acm.uestc.edu.cn/#/problem/show/913 握手 Time Limit: 2000/1000MS (Java/Others) Memory Limit ...
- 2013长沙 G Graph Reconstruction (Havel-Hakimi定理)
Graph Reconstruction Time Limit: 2 Seconds Memory Limit: 65536 KB Special Judge Let there ...
- HDU 1560 DNA sequence(DNA序列)
HDU 1560 DNA sequence(DNA序列) Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 32768/32768 K ...
随机推荐
- Backbone.js 为复杂Javascript应用程序提供模型(models)、集合(collections)、视图(views)的结构
Backbone.js 为复杂Javascript应用程序提供模型(models).集合(collections).视图(views)的结构.其中模型用于绑定键值数据和 自定义事件:集合附有可枚举函数 ...
- hdu4126(最小生成树+dfs)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4126 题意:给出一幅3000个点的图,有10000次操作: 求将某条边的权值变大后的最小生成树,最后输 ...
- 一起来开发Android的天气软件(四)——使用Gson解析数据
离上一篇文章过去才4.5天,我们赶紧趁热打铁继续完毕该系列的天气软件的开发. 承接上一章的内容使用Volley实现网络的通信.返回给我们的是这一串Json数据{"weatherinfo&qu ...
- Webserver管理系列:1、安装Windows Server 2008
简单了解下server: 1U: 2U: 3U: 在安装Windows Server 2008之前我们先了解下Windows Server 2008: Windows Server 2008是微软一个 ...
- CSS选项卡
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" " http://www.w3.org ...
- Java命令参数说明
Java在运行已编译完成的类时,是通过java虚拟机来装载和执行的,java虚拟机通过操作系统命令 JAVA_HOME"bin"java –option 来启动,-option为虚 ...
- Unable to start MySQL service. Another MySQL daemon is already running with the same UNIX socket
Unable to start MySQL service. Another MySQL daemon is already running with the same UNIX socket 特征 ...
- hdu 5035 概率论
n服务形式,各服务窗口等候时间指数公布,求所需的等待时间. 解: 相两点:首先,等到轮到他,然后就是送达时间. 潜伏期期望每个表单1/ki(1/ki,宣布预期指数公式).总的等待时间预期1/(求和ki ...
- el表达式 分页提交 中文乱码
el表达式 分页提交 中文乱码 网上找了很多资料,没能解决我的问题.并不是说网上的那些资料不好.而是不适用于我的问题吧. 看看的的问题: 原始页面 单击下一页 , 乱码. 引起的原因则是因为自己的js ...
- 主席树(可持久化线段树) 静态第k大
可持久化数据结构介绍 可持久化数据结构是保存数据结构修改的每一个历史版本,新版本与旧版本相比,修改了某个区域,但是大多数的区域是没有改变的, 所以可以将新版本相对于旧版本未修改的区域指向旧版本的该区域 ...