主题链接:

pid=2454">http://acm.hdu.edu.cn/showproblem.php?pid=2454

Problem Description
Wang Haiyang is a strong and optimistic Chinese youngster. Although born and brought up in the northern inland city Harbin, he has deep love and yearns for the boundless oceans. After graduation, he came to a coastal city and got a job in a marine transportation
company. There, he held a position as a navigator in a freighter and began his new life.



The cargo vessel, Wang Haiyang worked on, sails among 6 ports between which exist 9 routes. At the first sight of his navigation chart, the 6 ports and 9 routes on it reminded him of Graph Theory that he studied in class at university. In the way that Leonhard
Euler solved The Seven Bridges of Knoigsberg, Wang Haiyang regarded the navigation chart as a graph of Graph Theory. He considered the 6 ports as 6 nodes and 9 routes as 9 edges of the graph. The graph is illustrated as below.



 



According to Graph Theory, the number of edges related to a node is defined as Degree number of this node.



Wang Haiyang looked at the graph and thought, If arranged, the Degree numbers of all nodes of graph G can form such a sequence: 4, 4, 3,3,2,2, which is called the degree sequence of the graph. Of course, the degree sequence of any simple graph (according to
Graph Theory, a graph without any parallel edge or ring is a simple graph) is a non-negative integer sequence?



Wang Haiyang is a thoughtful person and tends to think deeply over any scientific problem that grabs his interest. So as usual, he also gave this problem further thought, As we know, any a simple graph always corresponds with a non-negative integer sequence.
But whether a non-negative integer sequence always corresponds with the degree sequence of a simple graph? That is, if given a non-negative integer sequence, are we sure that we can draw a simple graph according to it.?



Let's put forward such a definition: provided that a non-negative integer sequence is the degree sequence of a graph without any parallel edge or ring, that is, a simple graph, the sequence is draw-possible, otherwise, non-draw-possible. Now the problem faced
with Wang Haiyang is how to test whether a non-negative integer sequence is draw-possible or not. Since Wang Haiyang hasn't studied Algorithm Design course, it is difficult for him to solve such a problem. Can you help him?


 
Input
The first line of input contains an integer T, indicates the number of test cases. In each case, there are n+1 numbers; first is an integer n (n<1000), which indicates there are n integers in the sequence; then follow n integers, which indicate the numbers
of the degree sequence.


 
Output
For each case, the answer should be "yes"or "no" indicating this case is "draw-possible" or "non-draw-possible"


 
Sample Input
2
6 4 4 3 3 2 2
4 2 1 1 1
 
Sample Output
yes
no
 
Source

题意:

给出一个图的每个点的度数,求是否能构成一个简单图。

PS:

Havel定理:http://baike.baidu.com/view/8698382.htm?

fr=aladdin

给定一个非负整数序列{dn},若存在一个无向图使得图中各点的度与此序列一一相应,则称此序列可图化。进一步。若图为简单图,则称此序列可简单图化
可图化的判定:d1+d2+……dn=0(mod 2)。

关于详细图的构造,我们能够简单地把奇数度的点配对,剩下的所有搞成自环。

可简单图化的判定(Havel定理):把序列排成不增序,即d1>=d2>=……>=dn,则d可简单图化当且仅当d’={d2-1,d3-1。……d(d1+1)-1, d(d1+2)。d(d1+3),……dn}可简单图化。简单的说,把d排序后,找出度最大的点(设度为d1),把它与度次大的d1个点之间连边,然后这个点就能够无论了。一直继续这个过程。直到建出完整的图。或出现负度等明显不合理的情况。

代码例如以下:

#include<cstdio>
#include<algorithm>
using namespace std;
bool cmp(int a,int b)
{
return a>b;
}
int main()
{
int t,n,i,j;
int a[1010];
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
int sum = 0;
for(i=0; i<n; i++)
{
scanf("%d",&a[i]);
sum+=a[i];
}
if(sum%2)
{
printf("no\n");
continue;
}
for(i=0; i<n; i++)
{
if(a[i]>=n)
break;
}
if(i<n)
{
printf("no\n");
continue;
}
int flag = 0;
for(i=0; i<n; i++)
{
int cnt=0;
sort(a,a+n,cmp);
for(j=1; j<n; j++)
{
if(cnt==a[0])
break;
a[j]--;
cnt++;
if(a[j] < 0)
{
flag = 1;
break;
}
}
if(flag)
break;
if(cnt==0)
break;
a[0]-=cnt;
}
for(i=0; i<n; i++)
{
//printf("%d ",a[i]);
if(a[i])
break;
}
//printf("\n");
if(i<n || flag)
printf("no\n");
else
printf("yes\n");
}
return 0;
} /*
4
4 3 2 1 1
*/

版权声明:本文博客原创文章,博客,未经同意,不得转载。

HDU 2454 Degree Sequence of Graph G(Havel定理 推断一个简单图的存在)的更多相关文章

  1. hdu 2454 Degree Sequence of Graph G (推断简单图)

    ///已知各点的度,推断是否为一个简单图 #include<stdio.h> #include<algorithm> #include<string.h> usin ...

  2. HDU 2454"Degree Sequence of Graph G"(度序列可图性判断)

    传送门 参考资料: [1]:图论-度序列可图性判断(Havel-Hakimi定理) •题意 给你 n 个非负整数列,判断这个序列是否为可简单图化的: •知识支持 握手定理:在任何无向图中,所有顶点的度 ...

  3. HDU 2454 Degree Sequence of Graph G——可简单图化&&Heavel定理

    题意 给你一个度序列,问能否构成一个简单图. 分析 对于可图化,只要满足度数之和是偶数,即满足握手定理. 对于可简单图化,就是Heavel定理了. Heavel定理:把度序列排成不增序,即 $deg[ ...

  4. hdu 2454 Degree Sequence of Graph G(可简单图化判定)

    传送门 •Havel-Hakimi定理: 给定一个非负整数序列{d1,d2,...dn},若存在一个无向图使得图中各点的度与此序列一一对应,则称此序列可图化. 进一步,若图为简单图,则称此序列可简单图 ...

  5. Hdoj 2454.Degree Sequence of Graph G 题解

    Problem Description Wang Haiyang is a strong and optimistic Chinese youngster. Although born and bro ...

  6. 【Havel 定理】Degree Sequence of Graph G

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=2454 [别人博客粘贴过来的] 博客地址:https://www.cnblogs.com/debug ...

  7. cdoj913-握手 【Havel定理】

    http://acm.uestc.edu.cn/#/problem/show/913 握手 Time Limit: 2000/1000MS (Java/Others)     Memory Limit ...

  8. 2013长沙 G Graph Reconstruction (Havel-Hakimi定理)

    Graph Reconstruction Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge Let there ...

  9. HDU 1560 DNA sequence(DNA序列)

    HDU 1560 DNA sequence(DNA序列) Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K  ...

随机推荐

  1. hdu5046(重复覆盖+二分)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=5046 题意:要在n个城市里建造不超过k个机场覆盖所有城市,问机场城市之间最大距离最小为多少. 分析:二 ...

  2. linux操作提示:“Can&#39;t open file for writing”或“operation not permitted”的解决的方法

    在linux上使用vi命令改动一个文件内容的时候,发现无法保存,每次写完使用":q!"命令能够正常退出可是使用":wq!"命令保存文件并退出时出现一下信息提示: ...

  3. _beginThreadex创建多线程解读

    _beginThreadex创建多线程解读 一.须要的头文件支持 #include <process.h>         // for _beginthread() 须要的设置:Proj ...

  4. ALV DataChange EVENT

    在CX项目中,根据需求,自定义一个表,维护供应商的银行账号信息,当输入供应商编号时,自动在供应商名称列里自动填写供应商名称,用到了ALV  DataChange 事件 ,下面是源代码: *&- ...

  5. Windows Phone开发(41):漫谈关键帧动画之下篇

    原文:Windows Phone开发(41):漫谈关键帧动画之下篇 也许大家已经发现,其实不管什么类型的动画,使用方法基本是一样的,不知道大家总结出规律了没有?当你找到规律之后,你会发现真的可以举一反 ...

  6. 哈希表之bkdrhash算法解析及扩展

    BKDRHASH是一种字符哈希算法,像BKDRHash,APHash.DJBHash,JSHash,RSHash.SDBMHash.PJWHash.ELFHash等等,这些都是比較经典的,通过http ...

  7. Objective-C路成魔【18-复制对象】

    郝萌主倾心贡献,尊重作者的劳动成果,请勿转载. 假设文章对您有所帮助,欢迎给作者捐赠,支持郝萌主,捐赠数额任意.重在心意^_^ 我要捐赠: 点击捐赠 Cocos2d-X源代码下载:点我传送 将一个变量 ...

  8. 足球和oracle系列(3):oracle过程排名,世界杯第二回合战罢到来!

    足球与oracle系列(3):oracle进程排名.世界杯次回合即将战罢! 声明:        这不是技术文档,既然学来几招oracle简单招式.就忍不了在人前卖弄几下.纯为茶余饭后与数朋库友的插科 ...

  9. 《炉石传说》建筑设计欣赏(7):采用Google.ProtocolBuffers处理网络消息

    这一次,琢磨了一下Unity3D网络游戏发展的网络信息处理.服务器的网络游戏一般都是自主研发,因此,相应的网络消息处理应该培养自己.client/现在使用的邮件服务器之间的价差JSON和Google. ...

  10. Linux下一个C(编程入门.h档,.c档,而路多文件的调用)

    watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvdG90b3R1enVvcXVhbg==/font/5a6L5L2T/fontsize/400/fill/I0 ...