VGG 参数分析 转
上面放了一个keras用vgg16训练测试的例子,我也试过用vgg16训练然后测试自己的例子,效果一般,这里我们来分析一下vgg16的网络结果
keras代码如下
- def VGG_16(weights_path=None):
- model = Sequential()
- model.add(ZeroPadding2D((1,1),input_shape=(3,224,224)))#卷积输入层,指定了输入图像的大小
- model.add(Convolution2D(64, 3, 3, activation='relu'))#64个3x3的卷积核,生成64*224*224的图像,激活函数为relu
- model.add(ZeroPadding2D((1,1)))#补0,保证图像卷积后图像大小不变,其实用<span style="font-family:Consolas, 'Andale Mono WT', 'Andale Mono', 'Lucida Console', 'Lucida Sans Typewriter', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Liberation Mono', 'Nimbus Mono L', Monaco, 'Courier New', Courier, monospace;color:#333333;"><span style="font-size:10.8px;">padding = 'valid'参数就可以了</span></span>
- model.add(Convolution2D(64, 3, 3, activation='relu'))#再来一次卷积 生成64*224*224
- model.add(MaxPooling2D((2,2), strides=(2,2)))#pooling操作,相当于变成64*112*112
- model.add(ZeroPadding2D((1,1)))
- model.add(Convolution2D(128, 3, 3, activation='relu'))
- model.add(ZeroPadding2D((1,1)))
- model.add(Convolution2D(128, 3, 3, activation='relu'))
- model.add(MaxPooling2D((2,2), strides=(2,2)))#128*56*56
- model.add(ZeroPadding2D((1,1)))
- model.add(Convolution2D(256, 3, 3, activation='relu'))
- model.add(ZeroPadding2D((1,1)))
- model.add(Convolution2D(256, 3, 3, activation='relu'))
- model.add(ZeroPadding2D((1,1)))
- model.add(Convolution2D(256, 3, 3, activation='relu'))
- model.add(MaxPooling2D((2,2), strides=(2,2)))#256*28*28
- model.add(ZeroPadding2D((1,1)))
- model.add(Convolution2D(512, 3, 3, activation='relu'))
- model.add(ZeroPadding2D((1,1)))
- model.add(Convolution2D(512, 3, 3, activation='relu'))
- model.add(ZeroPadding2D((1,1)))
- model.add(Convolution2D(512, 3, 3, activation='relu'))
- model.add(MaxPooling2D((2,2), strides=(2,2)))#512*14*14
- model.add(ZeroPadding2D((1,1)))
- model.add(Convolution2D(512, 3, 3, activation='relu'))
- model.add(ZeroPadding2D((1,1)))
- model.add(Convolution2D(512, 3, 3, activation='relu'))
- model.add(ZeroPadding2D((1,1)))
- model.add(Convolution2D(512, 3, 3, activation='relu'))
- model.add(MaxPooling2D((2,2), strides=(2,2))) #到这里已经变成了512*7*7
- model.add(Flatten())#压平上述向量,变成一维25088
- model.add(Dense(4096, activation='relu'))#全连接层有4096个神经核,参数个数就是4096*25088
- model.add(Dropout(0.5))#0.5的概率抛弃一些连接
- model.add(Dense(4096, activation='relu'))#再来一个全连接
- model.add(Dropout(0.5))
- model.add(Dense(1000, activation='softmax'))
- if weights_path:
- model.load_weights(weights_path)
- return model
下面是详细的参数个数
- INPUT: [224x224x3] memory: 224*224*3=150K weights: 0
- CONV3-64: [224x224x64] memory: 224*224*64=3.2M weights: (3*3*3)*64 = 1,728 3*3 代表卷积大小 *3 代表输入时3个通道 *64代表输出64个
- CONV3-64: [224x224x64] memory: 224*224*64=3.2M weights: (3*3*64)*64 = 36,864 同理3*3是卷积大小 *64代表输入64通道 *64代表输出是64通道
- POOL2: [112x112x64] memory: 112*112*64=800K weights: 0
- CONV3-128: [112x112x128] memory: 112*112*128=1.6M weights: (3*3*64)*128 = 73,728
- CONV3-128: [112x112x128] memory: 112*112*128=1.6M weights: (3*3*128)*128 = 147,456
- POOL2: [56x56x128] memory: 56*56*128=400K weights: 0
- CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*128)*256 = 294,912
- CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*256)*256 = 589,824
- CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*256)*256 = 589,824
- POOL2: [28x28x256] memory: 28*28*256=200K weights: 0
- CONV3-512: [28x28x512] memory: 28*28*512=400K weights: (3*3*256)*512 = 1,179,648
- CONV3-512: [28x28x512] memory: 28*28*512=400K weights: (3*3*512)*512 = 2,359,296
- CONV3-512: [28x28x512] memory: 28*28*512=400K weights: (3*3*512)*512 = 2,359,296
- POOL2: [14x14x512] memory: 14*14*512=100K weights: 0
- CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2,359,296
- CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2,359,296
- CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2,359,296
- POOL2: [7x7x512] memory: 7*7*512=25K weights: 0
- FC: [1x1x4096] memory: 4096 weights: 7*7*512*4096 = 102,760,448
- FC: [1x1x4096] memory: 4096 weights: 4096*4096 = 16,777,216
- FC: [1x1x1000] memory: 1000 weights: 4096*1000 = 4,096,000
- TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)
- TOTAL params: 138M parameters
VGG 参数分析 转的更多相关文章
- AI:IPPR的数学表示-CNN结构/参数分析
前言:CNN迎接多类的挑战 特定类型的传统PR方法特征提取的方法是固定的,模式函数的形式是固定的,在理论上产生了特定的"局限性" 的,分类准确度可以使用PAC学习理论的方法计算出来 ...
- http_load安装与测试参数分析 - 追求自由自在的编程 - ITeye技术网站
http_load安装与测试参数分析 - 追求自由自在的编程 - ITeye技术网站 http_load -p 50 -s 120 urls
- cocos2dx tolua传递参数分析
cocos2dx tolua传递参数分析: tolua_Cocos2d_CCNode_addChild00 == void CCNode::addChild(CCNode *child) tolua_ ...
- jQuery学习笔记之jQuery.fn.init()的参数分析
这篇文章主要介绍了jQuery.fn.init()的参数分析,需要的朋友可以参考下 从return new jQuery.fn.init( selector, context, rootjQuer ...
- JavaScript事件监听以及addEventListener参数分析
事件监听 在Javascript中事件的监听是用来对某些操作做出反应的方法.例如监听一个按钮的pressdown, 或者获取鼠标左键按下时候鼠标的位置.这些都需要使用监听来完成.监听的函数很简单:ad ...
- Jmeter5.1——聚合报告参数分析
Jmeter5.1——聚合报告参数分析 Label: 每个JMeter的element的Name值.例如HTTP Request的Name. Samples:发出请求的数量.如果线程组中配置的是线程数 ...
- BMDP为常规的统计分析提供了大量的完备的函数系统,如:方差分析(ANOVA)、回归分析(Regression)、非参数分析(Nonparametric Analysis)、时间序列(Times Series)等等。此外,BMDP特别擅于进行出色的生存分析(Survival Analysis )。许多年来,一大批世界范围内顶级的统计学家都曾今参与过BMDP的开发工作。这不仅使得BMDP的权威性得到
BMDP是Bio Medical Data Processing的缩写,是世界级的统计工具软件,至今已经有40多年的历史.目前在国际上与SAS.SPSS被并称为三大统计软件包.BMDP是一个大 ...
- Impala队列内存参数分析
同步发布在csdn上 问题 对Impala队列内存的几个参数分析了下,欢迎指正 队列资源池的几个内存配置 Maximum Query Memory Limit 某个队列资源池,一个查询在一个Impal ...
- external-attacher源码分析(1)-main方法与启动参数分析
更多 ceph-csi 其他源码分析,请查看下面这篇博文:kubernetes ceph-csi分析目录导航 摘要 ceph-csi分析-external-attacher源码分析.external- ...
随机推荐
- BZOJ3998 TJOI2015弦论(后缀数组+二分答案)
先看t=1的情况.显然得求出SA(因为我不会SAM).我们一位位地确定答案.设填到了第len位,二分这一位填什么之后,在已经确定的答案所在的范围(SA上的某段区间)内二分,找到最后一个小于当前串的后缀 ...
- QAU 18校赛 J题 天平(01背包 判断能否装满)
问题 J: 天平 时间限制: 1 Sec 内存限制: 128 MB提交: 36 解决: 9[提交][状态][讨论版][命题人:admin] 题目描述 天平的右端放着一件重量为w的物品.现在有n个重 ...
- POJ1860(Currency Exchange)
题意: 给出一张各种货币交换的网络,问在网络中交换原有的货币,问货币能否增值? 解析: 判断是否存在正环即可 用spfa 负环和正环的判定方法一样 如果一个点的进队次数超过n次 则存在环 代码如 ...
- hdu 6319 Problem A. Ascending Rating (2018 Multi-University Training Contest 3 A)
链接: http://acm.hdu.edu.cn/showproblem.php?pid=6319 思路: 单调队列倒着维护,队列里面剩下的值的数量就是这一段区间的count值,如样例第一个区间:3 ...
- MT【66]寻找对称中心
设函数$f(x)=2x-cosx,{a_n}$是公差为$\frac{\pi}{8}$的等差数列,$f(a_1)+f(a_2)+f(a_3)+f(a_4)+f(a_5)=5\pi$,则 $[f(a_3) ...
- BZOJ 4499: 线性函数
4499: 线性函数 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 177 Solved: 127[Submit][Status][Discuss] ...
- 【BZOJ1856】[SCOI2010]字符串(组合数学)
[BZOJ1856][SCOI2010]字符串(组合数学) 题面 BZOJ 洛谷 题解 把放一个\(1\)看做在平面直角坐标系上沿着\(x\)正半轴走一步,放一个\(0\)看做往\(y\)轴正半轴走一 ...
- history新增方法
history对象包含用户访问过的URL,属于window对象的一部分,传统的使用中,它拥有length属性(浏览器历史列表URL数目) 及back().forward().go()方法. 而新的H5 ...
- CF 1023
昨天晚上打的一场CF,口胡一下前4题吧. A要注意细节,先找*,如果没有就判两者相等. 然后注意长度n - 1 <= m,然后前后比较,最后判断中间是不是字母. B先判断有没有解,然后求出 k ...
- Pycharm激活、配置以及快捷方式 | 图解
访问flyai.club,一键创建你的人工智能项目 来源 | Python (python6359) Pycharm可以去官网下载 Pycharm的安装激活 jar包的目的就是让截获截止时间并骗过py ...