前言

ggplot2是R语言最为强大的作图软件包,强于其自成一派的数据可视化理念。当熟悉了ggplot2的基本套路后,数据可视化工作将变得非常轻松而有条理。

本文主要对ggplot2的可视化理念及开发套路做一个总体介绍,具体绘图方法(如折线图,柱状图,箱线图等)将在后面的文章中分别进行讲解。

核心理念

1. 将数据,数据相关绘图,数据无关绘图分离

这点可以说是ggplot2最为吸引人的一点。众所周知,数据可视化就是将我们从数据中探索的信息与图形要素对应起来的过程。

ggplot2将数据,数据到图形要素的映射,以及和数据无关的图形要素绘制分离,有点类似java的MVC框架思想。这让ggplot2的使用者能清楚分明的感受到一张数据分析图真正的组成部分,有针对性的进行开发,调整。

2. 图层式的开发逻辑

在ggplot2中,图形的绘制是一个个图层添加上去的。举个例子来说,我们首先决定探索一下身高与体重之间的关系;然后画了一个简单的散点图;然后决定最好区分性别,图中点的色彩对应于不同的性别;然后决定最好区分地区,拆成东中西三幅小图;最后决定加入回归直线,直观地看出趋势。这是一个层层推进的结构过程,在每一个推进中,都有额外的信息被加入进来。在使用ggplot2的过程中,上述的每一步都是一个图层,并能够叠加到上一步并可视化展示出来。

3. 各种图形要素的自由组合

由于ggplot2的图层式开发逻辑,我们可以自由组合各种图形要素,充分自由发挥想象力。

基本开发步骤

1. 初始化 - ggplot()

这一步需要设定的是图的x轴,y轴和"美学特征"。基本形式如下:

p <- ggplot(data = , aes(x = , y = ))

这一步里,设置x轴和设置y轴很好理解。那么"美学特征"又是什么呢?

举个例子来说,下面这张散点图里,x轴表示年龄,y轴表示身高,很好理解:

但这张图除了展示年龄和身高的关系,还展示出每个样本点的体重:颜色越深表示体重越大。因此体重信息和年龄身高一样,也需要绑定到一个具体的列。这一列就是散点图中的"美学特征"。

来看看R语言绘制代码:

ggplot(heightweight, aes(x=ageYear, y=heightIn, colour=weightLb))+geom_point()

其中的colour参数就是该图的"美学特征"。

再比如,下面这张柱状图中,x轴表示日期,y轴表示权重,很好理解:

但这张图中每个日期对应了两个不同的权重并采用两个柱状来对比,那么这个划分依据也是另一个“美学特征”。

再看看绘制代码:

ggplot(cabbage_exp, aes(x=Date, y=Weight, fill=Cultivar))+geom_bar(position="dodge", stat="identity")

其中的fill参数就是该图的"美学特征"。

综上所述,图中的每个样本点除了通过它的坐标位置,还可以以其他形式展示信息,比如大小,色深,分组等。而这些新形式需要绑定的列,便叫做"美学特征"。

"美学特征"的形式和x,y轴一样是以列的形式给出,且列中元素个数和x,y轴列必然相等。它的设置也和x,y轴一样在ggplot()函数的aes参数括号内进行。

2.  绘制图层 - geom_bar()/geom_line()等等

上一步的主要工作是为数据可视化配置好了数据,接下来便可根据业务的需要来绘制不同的图,如折线图/柱状图/散点图等等。具体的实现方法在后面的文章中会细致讲解,这里重点提一下绘图函数里的stat参数。这个参数是表示对样本点做统计的方式,默认为identity,表示一个x对应一个y,同时还可以是bin,表示一个x对应落到该x的样本数。

3. 调整数据相关图形元素 - scale系列函数、某些专有函数

在ggplot2中,scale标尺机制专门负责完成数据到图像元素的映射。也许你会问,"美学特征"不是已经定义好了这个映射吗?然而事实是"美学特征"只是选定了映射前的数据,并没有说明具体映射到什么图形元素。

举个例子,假如某张表记录了不同种类水池的长,宽,深信息。现在需要绘制不同种类下水池长和宽关系的柱状图,那么初始化完成的是这个映射:

而scale函数完成的是这个映射:

显然a映射为了红色,b映射为了蓝色。

也许你还会问,我的代码不用scale,那么映射是如何完成的呢?答曰系统有默认映射的,就像绘图函数都有默认参数stat=identity这样。

4. 调整数据无关图形元素 - theme()、某些专有函数

这部分包括设置图片标题格式,文字字体这类和数据本身无关的图像元素。只需调用theme()函数或者某些专有函数(如annovate函数可为图片添加注释)便可实现。

一个图层绘制好后便可观察调整,然后开始下一个图层的制作,直到整幅图绘制完毕。

小结

本文作为该系列博客的开篇,从总体、抽象的角度介绍了R语言的数据可视化包ggplot2。读者如果觉得有些概念抽象难以理解,不必纠结,待看完该系列其他文章后再回过头来看本文,相信会有新的收获。

接下来的文章将从具体、细致的角度讲解如何使用R语言的ggplot2软件包进行各种数据可视化。

最后,欣赏一些使用ggplot2制作的成品图吧:

第一篇:R语言数据可视化概述(基于ggplot2)的更多相关文章

  1. 最棒的7种R语言数据可视化

    最棒的7种R语言数据可视化 随着数据量不断增加,抛开可视化技术讲故事是不可能的.数据可视化是一门将数字转化为有用知识的艺术. R语言编程提供一套建立可视化和展现数据的内置函数和库,让你学习这门艺术.在 ...

  2. 第六篇:R语言数据可视化之数据分布图(直方图、密度曲线、箱线图、等高线、2D密度图)

    数据分布图简介 中医上讲看病四诊法为:望闻问切.而数据分析师分析数据的过程也有点相似,我们需要望:看看数据长什么样:闻:仔细分析数据是否合理:问:针对前两步工作搜集到的问题与业务方交流:切:结合业务方 ...

  3. 第五篇:R语言数据可视化之散点图

    散点图简介 散点图通常是用来表述两个连续变量之间的关系,图中的每个点表示目标数据集中的每个样本. 同时散点图中常常还会拟合一些直线,以用来表示某些模型. 绘制基本散点图 本例选用如下测试数据集: 绘制 ...

  4. 第四篇:R语言数据可视化之折线图、堆积图、堆积面积图

    折线图简介 折线图通常用来对两个连续变量的依存关系进行可视化,其中横轴很多时候是时间轴. 但横轴也不一定是连续型变量,可以是有序的离散型变量. 绘制基本折线图 本例选用如下测试数据集: 绘制方法是首先 ...

  5. 第三篇:R语言数据可视化之条形图

    条形图简介 数据可视化中,最常用的图非条形图莫属,它主要用来展示不同分类(横轴)下某个数值型变量(纵轴)的取值.其中有两点要重点注意: 1. 条形图横轴上的数据是离散而非连续的.比如想展示两商品的价格 ...

  6. 第二篇:R语言数据可视化之数据塑形技术

    前言 绘制统计图形时,半数以上的时间会花在调用绘图命令之前的数据塑型操作上.因为在把数据送进绘图函数前,还得将数据框转换为适当格式才行. 本文将给出使用R语言进行数据塑型的一些基本的技巧,更多技术细节 ...

  7. 吴裕雄--天生自然 R语言数据可视化绘图(3)

    par(ask=TRUE) opar <- par(no.readonly=TRUE) # record current settings # Listing 11.1 - A scatter ...

  8. 吴裕雄--天生自然 R语言数据可视化绘图(4)

    par(ask=TRUE) # Basic scatterplot library(ggplot2) ggplot(data=mtcars, aes(x=wt, y=mpg)) + geom_poin ...

  9. 吴裕雄--天生自然 R语言数据可视化绘图(2)

    par(ask=TRUE) opar <- par(no.readonly=TRUE) # save original parameter settings library(vcd) count ...

随机推荐

  1. JQuery无法获取动态添加的图片宽度问题解决办法

    $('.imgUl li,.v_img').click(function(){ var _left = 0; var _top = 0; $('body').append('<div class ...

  2. linux下Rtree的安装

    1. 首先安装依赖libspatialindexhttp://libspatialindex.github.io/ sudo ./configure sudo make sudo make insta ...

  3. windows下实现uboot的tftp下载功能

    一.原理分析 带有uboot的开发板实际上充当的就是tftp客户端,而PC机扮演的角色就是tftp服务器端,而tftp下载功能实际上就是文件传输.tftp服务器可以建立在虚拟机linux下,也可以建立 ...

  4. CodeFirst中DB保存时报错:对一个或多个实体的验证失败。

    错误提示如下: 开始以为有字段可能没有添加数据,可是检查了很久,仍然没有任何头绪. 后使用DbEntityValidationException进行调试,问题才得以解决

  5. spring mvc ModelAndView 404的原因

    在使用ModelAndView时不要导入 import org.springframework.web.portlet.ModelAndView; 而要导入以下这个包 import org.sprin ...

  6. 关于org.openqa.selenium.ElementNotVisibleException

    最近在使用Selenium,编写最简单的百度search脚本,结果使用name来定位元素抛出了如下exception: 在定位百度的输入框,使用By.name()定位失败,但是使用By.id()和By ...

  7. event.preventDefault和恢复元素默认事件

    写页面事件的时候,有的时候需要用event.preventDefault取消原有的事件后进行重写,这个大家应该都知道. 那么怎么在取消默认事件后再恢复呢. 解绑我们自定义的事件就好了. 以Jquery ...

  8. Solr4.8.0源码分析(26)之Recovery失败造成的宕机原因分析

    最近在公司做SolrCloud的容灾测试,刚好碰到了一个比较蛋疼的问题,跟SolrCloud的Recovery和leader选举有关,正好拿出来分析下. 现象是这样的:比如我有一台3个shard的So ...

  9. hadoop输出统计

  10. BZOJ 3744 Gty的妹子序列

    Description 我早已习惯你不在身边, 人间四月天 寂寞断了弦. 回望身后蓝天, 跟再见说再见-- 某天,蒟蒻Autumn发现了从 Gty的妹子树上掉落下来了许多妹子,他发现 她们排成了一个序 ...