DDPG DDPG介绍2

ddpg输出的不是行为的概率, 而是具体的行为, 用于连续动作 (continuous action) 的预测

公式推导 推导

代码实现的gym的pendulum游戏,这个游戏是连续动作的

pendulum环境介绍

代码实践

"""
Deep Deterministic Policy Gradient (DDPG), Reinforcement Learning.
DDPG is Actor Critic based algorithm.
Pendulum example. View more on my tutorial page: https://morvanzhou.github.io/tutorials/ Using:
tensorflow 1.0
gym 0.8.0
""" import tensorflow as tf
import numpy as np
import gym
import time np.random.seed(1)
tf.set_random_seed(1) ##################### hyper parameters #################### MAX_EPISODES = 200
MAX_EP_STEPS = 200
lr_a = 0.001 # learning rate for actor
lr_c = 0.001 # learning rate for critic
gamma = 0.9 # reward discount
REPLACEMENT = [
dict(name='soft', tau=0.01),
dict(name='hard', rep_iter_a=600, rep_iter_c=500)
][0] # you can try different target replacement strategies
MEMORY_CAPACITY = 10000
BATCH_SIZE = 32 RENDER = True
OUTPUT_GRAPH = True
ENV_NAME = 'Pendulum-v0' ############################### Actor #################################### class Actor(object):
def __init__(self, sess, action_dim, action_bound, learning_rate, replacement):
self.sess = sess
self.a_dim = action_dim
self.action_bound = action_bound
self.lr = learning_rate
self.replacement = replacement
self.t_replace_counter = 0 with tf.variable_scope('Actor'):
# 这个网络用于及时更新参数
# input s, output a
self.a = self._build_net(S, scope='eval_net', trainable=True) ##这个网络不及时更新参数, 用于预测action
# input s_, output a, get a_ for critic
self.a_ = self._build_net(S_, scope='target_net', trainable=False) self.e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Actor/eval_net')
self.t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Actor/target_net') if self.replacement['name'] == 'hard':
self.t_replace_counter = 0
self.hard_replace = [tf.assign(t, e) for t, e in zip(self.t_params, self.e_params)]
else:
self.soft_replace = [tf.assign(t, (1 - self.replacement['tau']) * t + self.replacement['tau'] * e)
for t, e in zip(self.t_params, self.e_params)] def _build_net(self, s, scope, trainable):#根据state预测action的网络
with tf.variable_scope(scope):
init_w = tf.random_normal_initializer(0., 0.3)
init_b = tf.constant_initializer(0.1)
net = tf.layers.dense(s, 30, activation=tf.nn.relu,
kernel_initializer=init_w, bias_initializer=init_b, name='l1',
trainable=trainable)
with tf.variable_scope('a'):
actions = tf.layers.dense(net, self.a_dim, activation=tf.nn.tanh, kernel_initializer=init_w,
bias_initializer=init_b, name='a', trainable=trainable)
scaled_a = tf.multiply(actions, self.action_bound, name='scaled_a') # Scale output to -action_bound to action_bound
return scaled_a def learn(self, s): # batch update
self.sess.run(self.train_op, feed_dict={S: s}) if self.replacement['name'] == 'soft':
self.sess.run(self.soft_replace)
else:
if self.t_replace_counter % self.replacement['rep_iter_a'] == 0:
self.sess.run(self.hard_replace)
self.t_replace_counter += 1 def choose_action(self, s):
s = s[np.newaxis, :] # single state
return self.sess.run(self.a, feed_dict={S: s})[0] # single action def add_grad_to_graph(self, a_grads):
with tf.variable_scope('policy_grads'):
# ys = policy;
# xs = policy's parameters;
# a_grads = the gradients of the policy to get more Q
# tf.gradients will calculate dys/dxs with a initial gradients for ys, so this is dq/da * da/dparams
self.policy_grads = tf.gradients(ys=self.a, xs=self.e_params, grad_ys=a_grads) with tf.variable_scope('A_train'):
opt = tf.train.AdamOptimizer(-self.lr) # (- learning rate) for ascent policy
self.train_op = opt.apply_gradients(zip(self.policy_grads, self.e_params))#对eval_net的参数更新 ############################### Critic #################################### class Critic(object):
def __init__(self, sess, state_dim, action_dim, learning_rate, gamma, replacement, a, a_):
self.sess = sess
self.s_dim = state_dim
self.a_dim = action_dim
self.lr = learning_rate
self.gamma = gamma
self.replacement = replacement with tf.variable_scope('Critic'):
# Input (s, a), output q
self.a = tf.stop_gradient(a) # stop critic update flows to actor
# 这个网络用于及时更新参数
self.q = self._build_net(S, self.a, 'eval_net', trainable=True) # 这个网络不及时更新参数, 用于评价actor
# Input (s_, a_), output q_ for q_target
self.q_ = self._build_net(S_, a_, 'target_net', trainable=False) # target_q is based on a_ from Actor's target_net self.e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Critic/eval_net')
self.t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Critic/target_net') with tf.variable_scope('target_q'):
self.target_q = R + self.gamma * self.q_#target计算 with tf.variable_scope('TD_error'):
self.loss = tf.reduce_mean(tf.squared_difference(self.target_q, self.q))#计算loss with tf.variable_scope('C_train'):
self.train_op = tf.train.AdamOptimizer(self.lr).minimize(self.loss)#训练 with tf.variable_scope('a_grad'):
self.a_grads = tf.gradients(self.q, a)[0] # tensor of gradients of each sample (None, a_dim) if self.replacement['name'] == 'hard':
self.t_replace_counter = 0
self.hard_replacement = [tf.assign(t, e) for t, e in zip(self.t_params, self.e_params)]
else:
self.soft_replacement = [tf.assign(t, (1 - self.replacement['tau']) * t + self.replacement['tau'] * e)
for t, e in zip(self.t_params, self.e_params)] def _build_net(self, s, a, scope, trainable):#Q网络,计算Q(s,a)
with tf.variable_scope(scope):
init_w = tf.random_normal_initializer(0., 0.1)
init_b = tf.constant_initializer(0.1) with tf.variable_scope('l1'):
n_l1 = 30
w1_s = tf.get_variable('w1_s', [self.s_dim, n_l1], initializer=init_w, trainable=trainable)
w1_a = tf.get_variable('w1_a', [self.a_dim, n_l1], initializer=init_w, trainable=trainable)
b1 = tf.get_variable('b1', [1, n_l1], initializer=init_b, trainable=trainable)
net = tf.nn.relu(tf.matmul(s, w1_s) + tf.matmul(a, w1_a) + b1) with tf.variable_scope('q'):
q = tf.layers.dense(net, 1, kernel_initializer=init_w, bias_initializer=init_b, trainable=trainable) # Q(s,a)
return q def learn(self, s, a, r, s_):
self.sess.run(self.train_op, feed_dict={S: s, self.a: a, R: r, S_: s_})
if self.replacement['name'] == 'soft':
self.sess.run(self.soft_replacement)
else:
if self.t_replace_counter % self.replacement['rep_iter_c'] == 0:
self.sess.run(self.hard_replacement)
self.t_replace_counter += 1 ##################### Memory #################### class Memory(object):
def __init__(self, capacity, dims):
self.capacity = capacity
self.data = np.zeros((capacity, dims))
self.pointer = 0 def store_transition(self, s, a, r, s_):
transition = np.hstack((s, a, [r], s_))
index = self.pointer % self.capacity # replace the old memory with new memory
self.data[index, :] = transition
self.pointer += 1 def sample(self, n):
assert self.pointer >= self.capacity, 'Memory has not been fulfilled'
indices = np.random.choice(self.capacity, size=n)
return self.data[indices, :] import pdb; pdb.set_trace()
env = gym.make(ENV_NAME)
env = env.unwrapped
env.seed(1) state_dim = env.observation_space.shape[0]#
action_dim = env.action_space.shape[0]#1 连续动作,一维
action_bound = env.action_space.high#[2] # all placeholder for tf
with tf.name_scope('S'):
S = tf.placeholder(tf.float32, shape=[None, state_dim], name='s')
with tf.name_scope('R'):
R = tf.placeholder(tf.float32, [None, 1], name='r')
with tf.name_scope('S_'):
S_ = tf.placeholder(tf.float32, shape=[None, state_dim], name='s_') sess = tf.Session() # Create actor and critic.
# They are actually connected to each other, details can be seen in tensorboard or in this picture:
actor = Actor(sess, action_dim, action_bound, lr_a, REPLACEMENT)
critic = Critic(sess, state_dim, action_dim, lr_c, gamma, REPLACEMENT, actor.a, actor.a_)
actor.add_grad_to_graph(critic.a_grads)# # 将 critic 产出的 dQ/da 加入到 Actor 的 Graph 中去 sess.run(tf.global_variables_initializer()) M = Memory(MEMORY_CAPACITY, dims=2 * state_dim + action_dim + 1) if OUTPUT_GRAPH:
tf.summary.FileWriter("logs/", sess.graph) var = 3 # control exploration t1 = time.time()
for i in range(MAX_EPISODES):
s = env.reset()
ep_reward = 0 for j in range(MAX_EP_STEPS): if RENDER:
env.render() # Add exploration noise
a = actor.choose_action(s)
a = np.clip(np.random.normal(a, var), -2, 2) # add randomness to action selection for exploration
s_, r, done, info = env.step(a) M.store_transition(s, a, r / 10, s_) if M.pointer > MEMORY_CAPACITY:
var *= .9995 # decay the action randomness
b_M = M.sample(BATCH_SIZE)
b_s = b_M[:, :state_dim]
b_a = b_M[:, state_dim: state_dim + action_dim]
b_r = b_M[:, -state_dim - 1: -state_dim]
b_s_ = b_M[:, -state_dim:] critic.learn(b_s, b_a, b_r, b_s_)
actor.learn(b_s) s = s_
ep_reward += r if j == MAX_EP_STEPS-1:
print('Episode:', i, ' Reward: %i' % int(ep_reward), 'Explore: %.2f' % var, )
if ep_reward > -300:
RENDER = True
break print('Running time: ', time.time()-t1)

深度增强学习--DDPG的更多相关文章

  1. 深度增强学习--DPPO

    PPO DPPO介绍 PPO实现 代码DPPO

  2. 深度增强学习--A3C

    A3C 它会创建多个并行的环境, 让多个拥有副结构的 agent 同时在这些并行环境上更新主结构中的参数. 并行中的 agent 们互不干扰, 而主结构的参数更新受到副结构提交更新的不连续性干扰, 所 ...

  3. 深度增强学习--DQN的变形

    DQN的变形 double DQN prioritised replay dueling DQN

  4. 深度增强学习--Actor Critic

    Actor Critic value-based和policy-based的结合 实例代码 import sys import gym import pylab import numpy as np ...

  5. 深度增强学习--Policy Gradient

    前面都是value based的方法,现在看一种直接预测动作的方法 Policy Based Policy Gradient 一个介绍 karpathy的博客 一个推导 下面的例子实现的REINFOR ...

  6. 深度增强学习--Deep Q Network

    从这里开始换个游戏演示,cartpole游戏 Deep Q Network 实例代码 import sys import gym import pylab import random import n ...

  7. 常用增强学习实验环境 II (ViZDoom, Roboschool, TensorFlow Agents, ELF, Coach等) (转载)

    原文链接:http://blog.csdn.net/jinzhuojun/article/details/78508203 前段时间Nature上发表的升级版Alpha Go - AlphaGo Ze ...

  8. 马里奥AI实现方式探索 ——神经网络+增强学习

    [TOC] 马里奥AI实现方式探索 --神经网络+增强学习 儿时我们都曾有过一个经典游戏的体验,就是马里奥(顶蘑菇^v^),这次里约奥运会闭幕式,日本作为2020年东京奥运会的东道主,安倍最后也已经典 ...

  9. 增强学习 | AlphaGo背后的秘密

    "敢于尝试,才有突破" 2017年5月27日,当今世界排名第一的中国棋手柯洁与AlphaGo 2.0的三局对战落败.该事件标志着最新的人工智能技术在围棋竞技领域超越了人类智能,借此 ...

随机推荐

  1. Linux安全之密钥登录

    我们一般使用 PuTTY 等 SSH 客户端来远程管理 Linux 服务器.但是,一般的密码方式登录,容易有密码被暴力破解的问题.所以,一般我们会将 SSH 的端口设置为默认的 22 以外的端口,或者 ...

  2. CentOS7.5安装teamviwer13

    1.首先到官网下载teamviewer13的rpm包 https://www.teamviewer.com/zhcn/download/linux/ 2.安装 安装依赖包 http://mirror. ...

  3. CentOS按电源键关机

    chkconfig --list查看没有acpid服务.安装之后解决yum install acpid -y 安装后需要重启,不然会提示:* Starting acpid ...acpid: can' ...

  4. web服务器解析漏洞总结(转)

    转:http://www.secpulse.com/archives/3750.html 解析漏洞总结 2015 /1/27 22:09 一.IIS 5.x/6.0解析漏洞 IIS 6.0解析利用方法 ...

  5. 633. Sum of Square Numbers【Easy】【双指针-是否存在两个数的平方和等于给定目标值】

    Given a non-negative integer c, your task is to decide whether there're two integers a and bsuch tha ...

  6. 洛谷——P2799 国王的魔镜

    P2799 国王的魔镜 题目描述 国王有一个魔镜,可以把任何接触镜面的东西变成原来的两倍——只是,因为是镜子嘛,增加的那部分是反的.比如一条项链,我们用AB来表示,不同的字母表示不同颜色的珍珠.如果把 ...

  7. Linux命令之ping

    ping [选项] destination ping命令向网络主机发送ICMP回传请求 详细描述:ping使用ICMP协议强制ECHO_REQUEST(回传请求)数据报从主机或网关获取ICMP协议的E ...

  8. 【Nginx】初试反向代理:反向代理的原理和用途

    Nginx是一个轻量级的服务器,是一个俄罗斯的开发者开发的开源软件.Nginx具有占内存小.并发能力高的特点,底层采用epoll(Linux2.6+)和kqueue(FREEBSD)网络I/O模型,相 ...

  9. Requirejs快速使用

    Requirejs是一个简单,实用,强大的前端模块化js库,它遵循AMD这一客户端模块定义规范,使用它能够使我们前端代码更加清晰高效加载,摆脱了以前前端代码杂乱无序的状态. 使用步骤如下: 1.下载r ...

  10. 【Matrix-tree定理】【并查集】【kruscal算法】bzoj1016 [JSOI2008]最小生成树计数

    题意:求一个图的最小生成树个数. 矩阵树定理:一张无向图的生成树个数 = (度数矩阵 - 邻接矩阵)的任意一个n-1主子式的值. 度数矩阵除了对角线上D[i][i]为i的度数(不计自环)外,其他位置是 ...