图论:Prufer编码-Cayley定理
BZOJ1430:运用Cayley定理解决树的形态统计问题
由Prufer编码可以引申出来一个定理:Cayley
内容是不同的n结点标号的树的数量为n^(n-2)
换一种说法就是一棵无根树,当知道结点总数的时候,其最多可能有n^(n-2)种形态
这只是形态而已
对于BZOJ1430这道题
题目的打架关系可以用无根树来描述
除了形态之外,还要考虑打架的顺序,一共(n-1)!种
乘起来即可
#include<cstdio>
const int mod=;
int n;
long long ans=;
int main()
{
scanf("%d",&n);
for(int i=;i<=n-;i++)
ans=(ans*n)%mod;
for(int i=;i<=n-;i++)
ans=(ans*i)%mod;
printf("%lld",ans);
return ;
}
图论:Prufer编码-Cayley定理的更多相关文章
- prufer编码 cayley定理
背景(在codeforces 917D 报废后,看题解时听闻了这两个玩意儿.实际上917D与之“木有关西”,也可以认为是利用了prufer的一些思路.) 一棵标号树的Pufer编码规则如下:找到标号最 ...
- [bzoj1005][HNOI2008]明明的烦恼-Prufer编码+高精度
Brief Description 给出标号为1到N的点,以及某些点最终的度数,允许在 任意两点间连线,可产生多少棵度数满足要求的树? Algorithm Design 结论题. 首先可以参考这篇文章 ...
- luogu P4430 小猴打架(prufer编码与Cayley定理)
题意 n个点问有多少种有顺序的连接方法把这些点连成一棵树. (n<=106) 题解 了解有关prufer编码与Cayley定理的知识. 可知带标号的无根树有nn-2种.然后n-1条边有(n-1) ...
- 图论:Prufer编码
BZOJ1211:使用prufer编码解决限定结点度数的树的计数问题 首先学习一下prufer编码是干什么用的 prufer编码可以与无根树形成一一对应的关系 一种无根树就对应了一种prufer编码 ...
- 树的Prufer 编码和最小生成树计数
Prufer数列 Prufer数列是无根树的一种数列.在组合数学中,Prufer数列由有一个对于顶点标过号的树转化来的数列,点数为n的树转化来的Prufer数列长度为n-2.它可以通过简单的迭代方 ...
- 【转】prufer编码
既然有人提到了,就顺便学习一下吧,来源:http://greatkongxin.blog.163.com/blog/static/170097125201172483025666/ 一个含有n个点的完 ...
- Prüfer序列和cayley定理
参考资料: 1.matrix67 <经典证明:Prüfer编码与Cayley公式> 2.百度百科 3.Forget_forever prufer序列总结 4.维基百科 5.dirge的学习 ...
- 学习笔记:Prufer 编码
Prufer 编码可以将无根树与序列之间进行转化. 一个 \(n\) 个点.区分编号的无向图 和 Prufer 序列一定是一一对应的,下面会给出映射方式. 借此可以证明 Cayley 定理: \(n\ ...
- 树的计数 Prufer序列+Cayley公式
先安利一发.让我秒懂.. 第一次讲这个是在寒假...然而当时秦神太巨了导致我这个蒟蒻自闭+颓废...早就忘了这个东西了... 结果今天老师留的题中有两道这种的:Luogu P4981 P4430 然后 ...
随机推荐
- ACM入门步骤(一)
一般的入门顺序: 0. C语言的基本语法(或者直接开C++也行,当一个java选手可能会更受欢迎,并且以后工作好找,但是难度有点大),[参考书籍:刘汝佳的<算法竞赛入门经典>,C++入门可 ...
- 第十九次ScrumMeeting会议
第十九次Scrum Meeting 时间:2017/12/9 地点:三公寓大厅 人员:蔡帜 王子铭 游心 解小锐 王辰昱 李金奇 杨森 陈鑫 赵晓宇 照片: 目前工作进展 名字 今日 明天的工作 蔡帜 ...
- 冲刺ing-1
冲刺一 1.第一天的工作分配: 姓名 任务分工 吴伟华(队长) 布置团队任务,发表汇总博客及第一次冲刺博客 蔺皓雯 讨论任务分配 杨池宇 讨论任务分配 鲁婧楠 讨论任务分配 曾茜 讨论任务分配 蔡晨旸 ...
- 百度编辑器ueditor的图片地址修正
我用的百度编辑器为1.4.2的,相对于现在这个时间来说是比较新的.之前去的1.3版的,后来更新到1.4之后出现路径问题.因为今天晚上出现特别奇怪的问题,所以特地又整了一遍,发现这玩意还是得自己弄通了好 ...
- Khan Academy
Khan Academy是一个免费的学院. 致力于教育改革. 百度百科:ohn Resig 百度百科有记者采访,采访内容比较有意思.
- iOS开发实现UIView随着子控件的高度的变化而变化
例子 其实看完上面的叙述,你会思考,到底什么情况下,一个UIView需要只设置坐标不设置大小呢?其实这种场景相当普遍.比如,我们常常会碰到,一个View中有两个Label,两个Label的高度均和内容 ...
- 导入导出SQL数据库
在需要导出的数据库名上右键,选择转储SQL-数据和结构 在需要导入的连接中新建相同名称的数据库,右键选择运行SQL文件,即可将数据库数据转储到新的数据库中
- Oracle 以某字段分组,以某字段排序,取前几条
select * from (select row_number() over(partition by 以此字段为分组 order by 以此字段排序 desc rn from dual) whe ...
- Android中WebView的跨域漏洞分析和应用被克隆问题情景还原(免Root获取应用沙盒数据)
一.前言 去年年底支付宝的被克隆漏洞被爆出,无独有偶就是腾讯干的,其实真正了解这个事件之后会发现,感觉是针对支付宝.因为这个漏洞找出肯定花费了很大劲,主要是因为支付宝的特殊业务需要开启了WebView ...
- LG. 1003 铺地毯
LG. 1003 铺地毯 题意分析 给出平面中地毯的左上角坐标和长宽,然后给出一点(x,y).求此点最上面是哪个地毯的编号,若没被覆盖则输出-1. 将所有地毯的信息存在一个结构体中,由于后埔地毯在上面 ...