BZOJ1046 [HAOI2007]上升序列 【LIS + 字典序最小】
1046: [HAOI2007]上升序列
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 5410 Solved: 1877
[Submit][Status][Discuss]
Description
对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ax
2 < … < axm)。那么就称P为S的一个上升序列。如果有多个P满足条件,那么我们想求字典序最小的那个。任务给
出S序列,给出若干询问。对于第i个询问,求出长度为Li的上升序列,如有多个,求出字典序最小的那个(即首先
x1最小,如果不唯一,再看x2最小……),如果不存在长度为Li的上升序列,则打印Impossible.
Input
第一行一个N,表示序列一共有N个元素第二行N个数,为a1,a2,…,an 第三行一个M,表示询问次数。下面接M
行每行一个数L,表示要询问长度为L的上升序列。N<=10000,M<=1000
Output
对于每个询问,如果对应的序列存在,则输出,否则打印Impossible.
Sample Input
3 4 1 2 3 6
3
6
4
5
Sample Output
1 2 3 6
Impossible
LIS的nlogn算法又用上了,但还是很不熟练
问题要我们算出字典序最小的方案
我们可以根据f[i]用O(n)的复杂度直接扫一遍,当前f[i]还在所求范围内而且A[i]满足条件就输出,保证了字典序最小
总的O(nlogn + nm)不会爆
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = head[u]; k != -1; k = edge[k].next)
using namespace std;
const int maxn = 10005,maxm = 100005,INF = 1000000000;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
}
int A[maxn],f[maxn],bac[maxn],pos[maxn],pre[maxn],ans[maxn],n,len = 0;
int main(){
n = RD();
REP(i,n) A[i] = RD();
for (int i = n; i > 0; i--){
int l = 0,r = len,mid;
while (l < r){
mid = l + r + 1 >> 1;
if (bac[mid] && A[bac[mid]] > A[i]) l = mid;
else r = mid - 1;
}
f[i] = l + 1; pre[i] = bac[l];
if (!bac[f[i]] || A[i] > A[bac[f[i]]]) bac[f[i]] = i;
len = max(len,f[i]);
}
int m = RD(),v,last,first;
while (m--){
v = RD();
if (v > len) printf("Impossible\n");
else {
last = 0; first = true;
for (int i = 1; i <= n; i++)
if (f[i] >= v && A[i] > last){
if (first) first = false; else printf(" ");
printf("%d",A[i]);
last = A[i]; v--;
if (!v) break;
}
printf("\n");
}
}
return 0;
}
BZOJ1046 [HAOI2007]上升序列 【LIS + 字典序最小】的更多相关文章
- BZOJ1046: [HAOI2007]上升序列(LIS)
Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 5740 Solved: 2025[Submit][Status][Discuss] Descript ...
- bzoj1046 [HAOI2007]上升序列——LIS
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1046 倒序求最长下降子序列,则得到了每个点开始的最长上升子序列: 然后贪心输出即可. 代码如 ...
- BZOJ 1046: [HAOI2007]上升序列 LIS -dp
1046: [HAOI2007]上升序列 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3438 Solved: 1171[Submit][Stat ...
- BZOJ 1046: [HAOI2007]上升序列(LIS)
题目挺坑的..但是不难.先反向做一次最长下降子序列.然后得到了d(i),以i为起点的最长上升子序列,接下来贪心,得到字典序最小. ----------------------------------- ...
- BZOJ1046 [HAOI2007]上升序列
Description 对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ...
- 2014.8.15模拟赛【公主的工作】&&bzoj1046[HAOI2007]上升序列
bzoj题目是这样的 Description 对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm ...
- [BZOJ1046] [HAOI2007] 上升序列 (dp)
Description 对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ...
- BZOJ 1046 [HAOI2007]上升序列(LIS + 贪心)
题意: m次询问,问下标最小字典序的长度为x的LIS是什么 n<=10000, m<=1000 思路: 先nlogn求出f[i]为以a[i]开头的LIS长度 然后贪心即可,复杂度nm 我们 ...
- 【动态规划】【最长上升子序列】【贪心】bzoj1046 [HAOI2007]上升序列
nlogn求出最长上升子序列长度. 对每次询问,贪心地回答.设输入为x.当前数a[i]可能成为答案序列中的第k个,则若 f[i]>=x-k && a[i]>ans[k-1] ...
随机推荐
- Unity Lighting - Choosing a Lighting Technique 选择照明技术(一)
Choosing a Lighting Technique 选择照明技术 https://unity3d.com/cn/learn/tutorials/topics/graphics/choosi ...
- 前端开发工程师 - 04.页面架构 - CSS Reset & 布局解决方案 & 响应式 & 页面优化 &规范与模块化
04.页面架构 第1章--CSS Reset 第2章--布局解决方案 居中布局 课堂交流区 水平列表的底部对齐 如图所示,一个水平排列的列表,每项高度都未知,但要求底部对齐,有哪些方法可以解决呢? & ...
- Java开发工程师(Web方向) - 02.Servlet技术 - 第4章.JSP
第4章--JSP JSP JSP(Java Server Pages) - 中文名:Java服务器页面 动态网页技术标准 JSP = Html + Java + JSP tags 在服务器端执行,返回 ...
- [python]np.loadtxt报错
np.loadtxt报错 通过pandas生成的cvs数据利用nump.loadtxt读取的时候 tmp = np.loadtxt('test.csv', dtype=np.str, delimite ...
- Dreamweaver CS5网页制作教程
说到Dreamweaver这个网页制作神器,不由得想起在学校里上的选修课,那是的我们只知道 table 布局,只知道构建网站最方便的是使用“所见即所得”编辑器.回忆一下,真的是很怀旧啊! 虽说咱现在大 ...
- Python基础 之 文件操作
文件操作 一.路径 文件绝对路径:d:\python.txt 文件相对路径:在IDEA左边的文件夹中 二.编码方式 utf-8 gbk... 三.操作方式 1.只读 r 和 rb 绝对路径的打开操作 ...
- Java进阶知识点:服务端高并发的基石 - NIO与Reactor AIO与Proactor
一.背景 要提升服务器的并发处理能力,通常有两大方向的思路. 1.系统架构层面.比如负载均衡.多级缓存.单元化部署等等. 2.单节点优化层面.比如修复代码级别的性能Bug.JVM参数调优.IO优化等等 ...
- Mount qcow2 image
1.Mount a qcow2 image qemu-nbd - QEMU Disk Network Block Device Server: Export QEMU disk image using ...
- 在本地电脑使用远程服务器的图形界面——包括 MATLAB、PyCharm 等各种软件
在用本地电脑连接远程服务器的时候,大部分时候只能用命令行来操作.虽然可以 在本地电脑用 PyCharm 进行远程调试.在本地电脑远程使用服务器的 Jupyter Notebook.Ubuntu 和 W ...
- array.some() 方法兼容ie8
在第 5 版时,some 被添加进 ECMA-262 标准:这样导致某些实现环境可能不支持它.你可以把下面的代码插入到脚本的开头来解决此问题,从而允许在那些没有原生支持它的实现环境中使用它.该算法是 ...