import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入节点
OUTPUT_NODE = 10 # 输出节点
LAYER1_NODE = 500 # 隐藏层数 BATCH_SIZE = 100 # 每次batch打包的样本个数 # 模型相关的参数
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99 TRAINING_STEPS = 5000
MOVING_AVERAGE_DECAY = 0.99 def inference(input_tensor, avg_class, weights1, biases1, weights2, biases2):
# 不使用滑动平均类
if avg_class == None:
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)
return tf.matmul(layer1, weights2) + biases2
else:
# 使用滑动平均类
layer1 = tf.nn.relu(tf.matmul(input_tensor, avg_class.average(weights1)) + avg_class.average(biases1))
return tf.matmul(layer1, avg_class.average(weights2)) + avg_class.average(biases2) def train(mnist):
x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
# 生成隐藏层的参数。
weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1))
biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE]))
# 生成输出层的参数。
weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1))
biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE])) # 计算不含滑动平均类的前向传播结果
y = inference(x, None, weights1, biases1, weights2, biases2) # 定义训练轮数及相关的滑动平均类
global_step = tf.Variable(0, trainable=False)
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
average_y = inference(x, variable_averages, weights1, biases1, weights2, biases2) # 计算交叉熵及其平均值
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy) # 损失函数的计算
loss = cross_entropy_mean # 设置指数衰减的学习率。
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE,
LEARNING_RATE_DECAY,
staircase=True) # 优化损失函数
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) # 反向传播更新参数和更新每一个参数的滑动平均值
with tf.control_dependencies([train_step, variables_averages_op]):
train_op = tf.no_op(name='train') # 计算正确率
correct_prediction = tf.equal(tf.argmax(average_y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 初始化会话,并开始训练过程。
with tf.Session() as sess:
tf.global_variables_initializer().run()
validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels}
test_feed = {x: mnist.test.images, y_: mnist.test.labels} # 循环的训练神经网络。
for i in range(TRAINING_STEPS):
if i % 1000 == 0:
validate_acc = sess.run(accuracy, feed_dict=validate_feed)
print("After %d training step(s), validation accuracy using average model is %g " % (i, validate_acc))
xs,ys=mnist.train.next_batch(BATCH_SIZE)
sess.run(train_op,feed_dict={x:xs,y_:ys})
test_acc=sess.run(accuracy,feed_dict=test_feed)
print(("After %d training step(s), test accuracy using average model is %g" %(TRAINING_STEPS, test_acc))) def main(argv=None):
mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True)
train(mnist) if __name__=='__main__':
main()

吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用正则化的更多相关文章

  1. 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用滑动平均

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  2. 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用隐藏层

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  3. 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用激活函数

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  4. 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用指数衰减的学习率

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  5. 吴裕雄 python 神经网络——TensorFlow训练神经网络:全模型

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  6. 吴裕雄 python 神经网络——TensorFlow训练神经网络:花瓣识别

    import os import glob import os.path import numpy as np import tensorflow as tf from tensorflow.pyth ...

  7. 吴裕雄 python 神经网络——TensorFlow训练神经网络:MNIST最佳实践

    import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_N ...

  8. 吴裕雄 python 神经网络——TensorFlow训练神经网络:卷积层、池化层样例

    import numpy as np import tensorflow as tf M = np.array([ [[1],[-1],[0]], [[-1],[2],[1]], [[0],[2],[ ...

  9. 吴裕雄--天生自然 Tensorflow卷积神经网络:花朵图片识别

    import os import numpy as np import matplotlib.pyplot as plt from PIL import Image, ImageChops from ...

随机推荐

  1. NOIP2012 疫情控制 题解(LuoguP1084)

    NOIP2012 疫情控制 题解(LuoguP1084) 不难发现,如果一个点向上移动一定能控制更多的点,所以可以二分时间,判断是否可行. 但根节点不能不能控制,存在以当前时间可以走到根节点的点,可使 ...

  2. Linux - Shell - find - 基础

    概述 find 基础 背景 查找文件 人的记忆能力, 是有限的 计算机里的文件数量, 虽然不是无限, 但是也不少 要去找那些 记不清楚的文件, 必然要用查找 准备 OS centos7 用户 root ...

  3. 并发队列 ConcurrentLinkedQueue 及 BlockingQueue 接口实现的四种队列

    队列是一种特殊的线性表,它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作.进行插入操作的端称为队尾,进行删除操作的端称为队头.队列中没有元素时,称为空队列. 在队列这 ...

  4. RNGCryptoServiceProvider 生成订单号

    先生成1~1000的随机数 class Program { // Create a new instance of the RNGCryptoServiceProvider. private stat ...

  5. js将后台传入得时间格式化

    //格式化时间函数Date.prototype.Format = function (fmt) { var o = { "M+": this.getMonth() + 1, //月 ...

  6. Java:反射机制学习笔记

    目录 一.反射机制 1.概述 2.优缺点 3.类加载的过程 二.获取Class对象的三种方式 1.Class.forName("全类名") 2.类名.class 3.对象.getC ...

  7. Dockerfile文档编写

    图片显示问题,附上有道云笔记中链接:http://note.youdao.com/noteshare?id=fba6d2f53fd6447ba32c3b7accfeb89b&sub=B36B5 ...

  8. 6_7 树的层次遍历(UVa122)<二叉树的动态创建与BFS>

    树状结构在计算机科学的许多领域中都相当重要.本问题牵涉到建立树及走访树.给你一二叉树,你的任务是写一个程序来打印依「阶层(level-order)」走访的结果.在本问题中,二叉树的每个节点含有一个正整 ...

  9. 吴裕雄 python 神经网络——TensorFlow 三层简单神经网络的前向传播算法

    import tensorflow as tf w1= tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1)) w2= tf.Variable( ...

  10. Java面向对象编程 -6

    数组的基本概念 数组的本质:一组相关变量的集合. 但是需要注意的一点是:在java里面讲数组定义为了引用数据类型,所以数组的使用一定要牵扯到内存分配,那么首先一定要想到使用关键字new来处理 数组的定 ...