@

YOLOv4是最近开源的一个又快又准确的目标检测器。

首先看一下Github上的版本要求及下载地址:

系统:Windows or Linux

CMake >= 3.12: https://cmake.org/download/

CUDA 10.0: https://developer.nvidia.com/cuda-toolkit-archive

OpenCV >= 2.4: 直接从Opencv官网下载就好

cuDNN >= 7.0 for CUDA 10.0: https://developer.nvidia.com/rdp/cudnn-archive

Visual Studio 2015/2017/2019: https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community

YOLO v4源码

YOLOv4仓库github地址: https://github.com/AlexeyAB/darknet.

为了防止下载压缩包解压后会丢失一些文件,建议在码云上clone下来。

CMake安装

进入官网下载最新的版本即可,图中红色标注的位置,下载后一路默认安装点下来就好。(PS:如果下载网络较慢,这里有百度云链接,提取码:ev94)

CUDA安装

CUDA是我当初安装tensorflow2.0时安的

主要是从官网上下载安装文件,

解压缩,如图:



同意并继续,选择精简,进入安装,大概要几分钟的时间。



安装完成后检查是否安装成功。

win+R 进入运行界面,输入cmd进入命令行界面,输入nvcc --version 查看是否安装成功

cuDNN安装

在官网下载前需要注册NVIDIA DEVELPOER 的账号,选择与CUDA10.0对应的版本cuDNN7.6.4,点击library for win10文件,大概有240M左右。如下图所示:



官网的安装教程:https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installwindows

其实就是将解压后将下面几个文件复制到CUDA的对应路径下。

  1. Copy ...\cuda\bin\cudnn64_7.6.5.32.dll to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\bin.
  2. Copy ...\cuda\ include\cudnn.h to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\include.
  3. Copy ...\cuda\lib\x64\cudnn.lib to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\lib\x64.

简便快捷的方法就是把下载好的CUDNN文件 全部复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2中

OpenCV安装

从官网下载,版本要大于2.4

下载好直接解压就可以,并将installpath\opencv\build\路径添加到系统的环境变量中,

CMake编译的时候会自动找到这个文件夹

添加环境变量如下图所示,在此电脑右击属性,弹出下图界面,点击高级系统设置。

点击环境变量,新建环境变量,



新建环境变量,变量名为OpenCV_DIR,变量地址为C:\Program Files\opencv\build

Cmake编译

如果你想用GPU加快检测速度,需要将Makefile文件用记事本打开,更改GPU=1 CUDNN=1 CUDNN_HALF=1 OPENCV=1。如下图所示:



选择Browse Source 为源码所在文件夹,Browse Build 可以选择同一文件夹,点击Configure,弹出如下界面:



第一项选择你所安装的VS版本,第二项平台选择x64 ,点击Finish,点击Configure,没有错误后点击生成。



成功后点击Open Project 打开项目文件。

VS编译

注意:选择release版本,x64,直接生成解决方案。



将D:\github\darknet\Release文件夹下的darknet.exe文件复制



打开到D:\github\darknet\build\darknet\x64文件夹内进行粘贴,如下图所示



将opencv ...\opencv\build\x64\vc14\bin 下的两个opencv_world330.dll和 opencv_ffmpeg330_64.dll dll文件复制到上述文件夹内。如下图所示:



将cuDNN中的cudnn64_7.dll复制到上述文件夹。

图像测试

为了验证是否配置成功,下载推荐的yolov4.weights文件,文件大概有245M,百度云.密码:wg0r

将下载后的文件放在D:\github\darknet\build\darknet\x64文件夹下。

打开cmd命令行,转到上述的文件夹内,如下图所示:

按照GitHub,测试图像和视频复制对应的命令:

Yolo v4 COCO - image: darknet.exe detector test cfg/coco.data cfg/yolov4.cfg yolov4.weights -thresh 0.25

Output coordinates of objects: darknet.exe detector test cfg/coco.data yolov4.cfg yolov4.weights -ext_output dog.jpg

Yolo v4 COCO - video: darknet.exe detector demo cfg/coco.data cfg/yolov4.cfg yolov4.weights -ext_output test.mp4

测试结果

  1. 自带的dog图像

  2. 羊群

YOLOv4的更多相关文章

  1. 【论文笔记】YOLOv4: Optimal Speed and Accuracy of Object Detection

    论文地址:https://arxiv.org/abs/2004.10934v1 github地址:https://github.com/AlexeyAB/darknet 摘要: 有很多特征可以提高卷积 ...

  2. YOLOV4在linux下训练自己数据集(亲测成功)

    最近推出了yolo-v4我也准备试着跑跑实验看看效果,看看大神的最新操作 这里不做打标签工作和配置cuda工作,需要的可以分别百度搜索   VOC格式数据集制作,cuda和cudnn配置 我们直接利用 ...

  3. YOLOV4源码详解

    一. 整体架构 整体架构和YOLO-V3相同(感谢知乎大神@江大白),创新点如下: 输入端 --> Mosaic数据增强.cmBN.SAT自对抗训练: BackBone --> CSPDa ...

  4. YoloV4当中的Mosaic数据增强方法(附代码详细讲解)码农的后花园

    上一期中讲解了图像分类和目标检测中的数据增强的区别和联系,这期讲解数据增强的进阶版- yolov4中的Mosaic数据增强方法以及CutMix. 前言 Yolov4的mosaic数据增强参考了CutM ...

  5. YOLOv4: Darknet 如何于 Docker 编译,及训练 COCO 子集

    YOLO 算法是非常著名的目标检测算法.从其全称 You Only Look Once: Unified, Real-Time Object Detection ,可以看出它的特性: Look Onc ...

  6. C#封装YOLOv4算法进行目标检测

    C#封装YOLOv4算法进行目标检测 概述 官网:https://pjreddie.com/darknet/ Darknet:[Github] C#封装代码:[Github] YOLO: 是实现实时物 ...

  7. YOLOv4: Darknet 如何于 Ubuntu 编译,及使用 Python 接口

    本文将介绍 YOLOv4 官方 Darknet 实现,如何于 Ubuntu 18.04 编译,及使用 Python 接口. 主要内容有: 准备基础环境: Nvidia Driver, CUDA, cu ...

  8. 深度剖析目标检测算法YOLOV4

    深度剖析目标检测算法YOLOV4 目录 简述 yolo 的发展历程 介绍 yolov3 算法原理 介绍 yolov4 算法原理(相比于 yolov3,有哪些改进点) YOLOV4 源代码日志解读 yo ...

  9. YOLOv4全文阅读(全文中文翻译)

    YOLOv4全文阅读(全文中文翻译) YOLOv4: Optimal Speed and Accuracy of Object Detection 论文链接: https://arxiv.org/pd ...

随机推荐

  1. Mysql联合索引的最左前缀原则以及b+tree

    软件版本mysql5.7 根据官网的文档 https://dev.mysql.com/doc/refman/5.7/en/multiple-column-indexes.html 查询条件要符合最左原 ...

  2. Raft算法系列教程2:状态机复制 (State Machine Replication)

    分区容错如何保证? 在分布式系统设计中,需要遵循CAP理论,如果我们要让一个服务具有容错能力,那么最常用最直接的办法就是让一个服务的多个副本同时运行在不同的节点上.但是,当一个服务的多个副本都在运行的 ...

  3. C#获取时间戳的几种方式

    Console.WriteLine(Convert.ToDouble(DateTime.UtcNow.Ticks - 621355968000000000) / (10 * 1000 * 1000)) ...

  4. 如何使用iis发布多个ftp,为何ftp 503错误?

    使用iis做网站时,需要每个网站都是80端口,所以用到了域名,为了方便发布应用,故将所有网站均添加了ftp发布,当我添加ftp域名绑定后,发现根本无法登陆ftp服务器,后经过百度+博客发现,解决方案: ...

  5. (十五)、shell脚本之简单控制流结构

    一.基本的控制结构 1.控制流 常见的控制流就是if.then.else语句提供测试条件,测试条件可以基于各种条件.例如创建文件是否成功.是否有读写权限等,凡是执行的操作有失败的可能就可以用控制流,注 ...

  6. Tomcat服务器的下载以及配置

    1,Tomcat的下载与安装 本人采用的是解压版安装,只需要在官网(https://tomcat.apache.org/)下载好压缩版的Tomcat,再解压在你想安装的目录下即可.我的安装目录是D:\ ...

  7. 关于Webservice接口对接相关总结

    Webservice接口对接 因为近期处理了很多关于Webservice的接口对接,所以这篇文章是对近期自己的学习做一个简单的总结. 一: 对于接口对接,建议首先需要了解一下WSDL文件,以及入参的S ...

  8. Flutter 基础组件:图片和Icon

    前言 Flutter中,可以通过Image组件来加载并显示图片,Image的数据源可以是asset.文件.内存以及网络. ImageProvider 是一个抽象类,主要定义了图片数据获取的接口load ...

  9. 比较Power BI和Tableau,好比用奔驰对比奥迪

    经常会有人问Power BI和Tableau的区别,好吧,为了非IT专业的能看懂,咱们就用车,奔驰和奥迪来对比一下.因为他们确实有太多相似之处. 所以Power BI VS Tableau,就相当于国 ...

  10. Ansible User 模块添加单用户并ssh-key复制

    Ansible User 模块添加单用户并ssh-key复制 1 Ansible 版本: ansible 2.9.6 config file = /etc/ansible/ansible.cfg co ...