JavaScript图形实例:阿基米德螺线
1.阿基米德螺线
阿基米德螺线亦称“等速螺线”。当一点P沿动射线OP以等速率运动的同时,该射线又以等角速度绕点O旋转,点P的轨迹称为“阿基米德螺线”。
阿基米德螺线的笛卡尔坐标方程式为:
r=10*(1+t)
x=r*cos(t * 360)
y=r*sin(t *360)
编写如下的HTML代码。
<!DOCTYPE html>
<head>
<title>阿基米德螺线</title>
<script type="text/javascript">
function draw(id)
{
var canvas=document.getElementById(id);
if (canvas==null)
return false;
var context=canvas.getContext('2d');
context.fillStyle="#EEEEFF";
context.fillRect(0,0,300,300);
context.strokeStyle="red";
context.lineWidth=2;
var dig=Math.PI/32;
context.beginPath();
context.moveTo(150,150);
for (var i=1;i<=256;i++)
{
x=150+5*i*dig*Math.sin(i*dig);
y=150+5*i*dig*Math.cos(i*dig);
context.lineTo(x,y);
}
context.stroke();
}
</script>
</head>
<body onload="draw('myCanvas');">
<canvas id="myCanvas" width="300" height="300"></canvas>
</body>
</html>
将上述HTML代码保存到一个html文本文件中,再在浏览器中打开包含这段HTML代码的html文件,可以看到在浏览器窗口中绘制出一条阿基米德螺线,如图1所示。

图1 阿基米德螺线
2.李萨如曲线
一个质点同时在X轴和Y轴上作简谐运动形成的图形就是李萨如曲线。
李萨如曲线上的每一个点都可以用如下的公式进行表示:
X=A1sin(ω1t+ψ1)
Y=A2sin(ω2t+ψ2)
为绘制李萨如曲线,编写如下的HTML文件。
在程序中,设定 X=R*SIN(n*θ),Y= R*SIN(k*θ) (0≤θ≤2π)
<!DOCTYPE html>
<head>
<title>李萨如曲线</title>
<script type="text/javascript">
function draw(id)
{
var canvas=document.getElementById(id);
if (canvas==null)
return false;
var context=canvas.getContext('2d');
context.fillStyle="#EEEEFF";
context.fillRect(0,0,450,450);
context.strokeStyle="red";
context.lineWidth=1;
var dig=Math.PI/64;
context.beginPath();
n=0;
b=30;
for (py=50;py<=450;py+=70)
{
n=n+1; k=0;
for (px=50;px<=450;px+=70)
{
k++;
for (var i=0;i<=128;i++)
{
x=px+b*Math.sin(n*i*dig);
y=py-b*Math.sin(k*i*dig);
if (i==0)
{
context.moveTo(x,y);
bx=x; by=y;
}
else
context.lineTo(x,y);
}
context.lineTo(bx,by);
context.closePath();
context.fill();
context.stroke();
}
}
}
</script>
</head>
<body onload="draw('myCanvas');">
<canvas id="myCanvas" width="450" height="450"></canvas>
</body>
</html>
将上述HTML代码保存到一个html文本文件中,再在浏览器中打开包含这段HTML代码的html文件,可以看到在浏览器窗口中绘制出6种李萨如曲线,如图2所示。

图2 李萨如曲线
由图2看出,当n=1,k=1时,李萨如曲线为一条直线。如果在Y坐标计算时加上一个相位,如修改为“y=py-b*Math.sin(k*i*dig+Math.PI/4);”,则绘制的李萨如曲线如图3所示。

图3 李萨如曲线
3.可设置参数的李萨如曲线
设李萨如曲线上的点(x,y)计算式为:
X=A1sin(mθ)
Y=A2sin(nθ) (0≤θ≤2π)
我们可以设置不同的参数A1、A2、m、n,绘制出不同的李萨如曲线。
编写的HTML代码如下。
<!DOCTYPE html>
<head>
<title>可设置参数的李萨如曲线</title>
<script type="text/javascript">
function draw(id)
{
var canvas=document.getElementById(id);
if (canvas==null)
return false;
var context=canvas.getContext('2d');
context.fillStyle="#EEEEFF";
context.fillRect(0,0,300,300);
context.strokeStyle="red";
context.lineWidth=1;
var dig=Math.PI/64;
context.beginPath();
var a1=eval(document.myForm.A1.value);
var a2=eval(document.myForm.A2.value);
var n=eval(document.myForm.N.value);
var m=eval(document.myForm.M.value);
px=150; py=150;
for (var i=0;i<=128;i++)
{
x=px+a1*Math.sin(m*i*dig);
y=py-a2*Math.sin(n*i*dig);
if (i==0)
{
context.moveTo(x,y);
bx=x; by=y;
}
else
context.lineTo(x,y);
}
context.lineTo(bx,by);
context.closePath();
context.stroke();
}
</script>
</head>
<body>
<form name="myForm">李萨如曲线上的点(x,y)计算式为:<br>
X=A1sin(mθ) <br> Y=A2sin(nθ) (0≤θ≤2π) <br>
A1<input type=number name="A1" value=100 size=3>
A2<input type=number name="A2" value=100 size=3><br>
M <input type=number name="M" value=3 size=3>
N <input type=number name="N" value=5 size=3>
<input type=button value="确定" onClick="draw('myCanvas');">
</form><br>
<canvas id="myCanvas" width="300" height="300">
</canvas>
</body>
</html>
在浏览器中打开包含这段HTML代码的html文件,可以看到在浏览器窗口中,设置相应的参数后,单击“确定”按钮,可绘制出相应的李萨如曲线,如图4所示。

图4 李萨如曲线
4.由李萨如曲线构成的螺线
在0~6π的螺线上取72个点,在这72个点的位置绘制72个李萨如曲线,并且李萨如曲线随着R值的变大而逐渐变大。编写HTML文件如下。
<!DOCTYPE html>
<head>
<title>阿基米德螺线和李萨如曲线</title>
<script type="text/javascript">
function draw(id)
{
var canvas=document.getElementById(id);
if (canvas==null)
return false;
var context=canvas.getContext('2d');
context.fillStyle="#EEEEFF";
context.fillRect(0,0,500,300);
context.strokeStyle="red";
context.lineWidth=2;
var r=0;
for (var i=0;i<6*Math.PI;i+=Math.PI/12)
{
r+=3;
px=265+(r+40)*Math.sin(i);
py=150+(r/2+25)*Math.cos(i);
var dig=Math.PI/64;
context.beginPath();
for (var j=0;j<=128;j++)
{
x=px+r/7*Math.sin(j*dig);
y=py-r/14*Math.sin(j*dig+Math.PI/5);
if (j==0)
{
context.moveTo(x,y);
bx=x; by=y;
}
else
context.lineTo(x,y);
}
context.lineTo(bx,by);
context.closePath();
context.stroke();
}
}
</script>
</head>
<body onload="draw('myCanvas');">
<canvas id="myCanvas" width="500" height="300"></canvas>
</body>
</html>
在浏览器中打开包含这段HTML代码的html文件,可以看到在浏览器窗口中绘制出如图5所示的由李萨如曲线构成的螺线图案。

图5 由李萨如曲线构成的螺线
JavaScript图形实例:阿基米德螺线的更多相关文章
- JavaScript图形实例:圆内螺线
数学中有各式各样富含诗意的曲线,螺旋线就是其中比较特别的一类.螺旋线这个名词来源于希腊文,它的原意是“旋卷”或“缠卷”.例如,平面螺旋线便是以一个固定点开始向外逐圈旋绕而形成的曲线. 阿基米德螺线和黄 ...
- HFSS——平面正弦加载阿基米德螺旋线模型设计
这学期开始进入HFSS的学习,这是软件应该是电磁相关专业必须掌握的软件之一.前几天图老师发布第一个模型设计任务,是关于平面正弦加载阿基米德螺旋线,拿到具体要求后,就去网上找资料,发现有关HFSS的资料 ...
- hdu1071(抛物线弓形面积阿基米德算法)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1071 题意:给出抛物线的顶点和它与一直线的两交点,求他们围成的面积: 思路: 可以直接求出他们的方程式 ...
- 阿基米德项目ALS矩阵分解算法应用案例
转自:https://github.com/ceys/jdml/wiki/ALS 阿基米德项目ALS矩阵分解算法应用案例 编写人:ceys/youyis 最后更新时间:2014.5.12 一.算法描述 ...
- MT【237】阿基米德三角形的一些常见性质
阿基米德三角形的常见性质:抛物线:$x^2=2py,AB$为抛物线的弦,$AQ,BQ$为切线,记$Q(x_0,y_0)$则$1)k_{QA}*k_{QB}=\dfrac{p}{2x_0}$$2)k_{ ...
- JavaScript图形实例:线段构图
在“JavaScript图形实例:四瓣花型图案”和“JavaScript图形实例:蝴蝶结图案”中,我们绘制图形时,主要采用的方法是先根据给定的曲线参数方程计算出两点坐标,然后将两点用线段连接起来,线段 ...
- JavaScript图形实例:再谈IFS生成图形
在“JavaScript图形实例:迭代函数系统生成图形”一文中,我们介绍了采用迭代函数系统(Iterated Function System,IFS)创建分形图案的一些实例.在该文中,仿射变换函数W的 ...
- JavaScript图形实例:随机SierPinski三角形
在“JavaScript图形实例:SierPinski三角形”中,我们介绍了SierPinski三角形的基本绘制方法,在“JavaScript图形实例:迭代函数系统生成图形”一文中,介绍了采用IFS方 ...
- JavaScript图形实例:图形的旋转变换
旋转变换:图形上的各点绕一固定点沿圆周路径作转动称为旋转变换.可用旋转角表示旋转量的大小. 旋转变换通常约定以逆时针方向为正方向.最简单的旋转变换是以坐标原点(0,0)为旋转中心,这时,平面上一点P( ...
随机推荐
- TensorFlow从0到1之XLA加速线性代数编译器(9)
加速线性代数器(Accelerated linear algebra,XLA)是线性代数领域的专用编译器.根据 https://www.tensorflow.org/performance/xla/, ...
- 厉害了!除了find命令,还有这么多文件查找命令,高手必备!
大家好,我是良许. 在系统里查找文件,是所有工程师都必备的技能(不管你用的是 Windows .Linux.还是 MacOS 系统).对于 Linux 操作系统,单单一个 find 命令就可以完成非常 ...
- MySQL的使用方法和视图、索引、以及存储过程的一些简单方法
一,基本概念 1, 常用的两种引擎: (1) InnoDB a,支持ACID,简单地说就是支持事务完整性.一致性: b,支持行锁,以及类似ORACLE的一 ...
- Python学习日志-03
(3)如何运行程序 交互提示模式下编写代码: 最简单的运行Python程序的办法就是在Python交互命令行中输入这些程序.在cmd中输入python,不需要任何参数就可以进入Python交互命令行 ...
- Asp.Net 五大对象及作用
Connection(连接对象):与数据源建立连接. DataAdapter(适配器对象):对数据源执行操作并返回结果,在DataSet与数据源之间建立通信,将数据源中的数据写入DataSet中,或根 ...
- chromedp入门
chromedp入门 chromedp是什么? chromedp是go写的,支持Chrome DevTools Protocol 的一个驱动浏览器的库.并且它不需要依赖其他的外界服务(比如 Selen ...
- 10、一个action中处理多个方法的调用第二种方法method的方式
在实际的项目中,经常采用现在的第二种方式在struct.xml中采用清单文件的方式 我们首先来看action package com.bjpowernode.struts2; import com.o ...
- IDEA 2019版本永久破解教程
1.第一步解压文件(文件网盘下载链接在下面) 2.运行IDEA安装包 3.点击Next 4.注意安装位置文件夹不要带中文-选择好点击Next 5.勾选64-bit launcher,勾选.java,点 ...
- JavaScript基础对象创建模式之私有属性和方法(024)
JavaScript没有特殊的语法来表示对象的私有属性和方法,默认的情况下,所有的属性和方法都是公有的.如下面用字面声明的对象: var myobj = { myprop: 1, getProp: f ...
- em(倍)与px的区别
在国内网站中,包括三大门户,以及“引领”中国网站设计潮流的蓝色理想,ChinaUI等都是使用了px作为字体单位.只有百度好歹做了个可调的表率.而 在大洋彼岸,几乎所有的主流站点都使用em作为字体单位, ...