1.阿基米德螺线

阿基米德螺线亦称“等速螺线”。当一点P沿动射线OP以等速率运动的同时,该射线又以等角速度绕点O旋转,点P的轨迹称为“阿基米德螺线”。

阿基米德螺线的笛卡尔坐标方程式为:

r=10*(1+t)

x=r*cos(t * 360)

y=r*sin(t *360)

编写如下的HTML代码。

<!DOCTYPE html>

<head>

<title>阿基米德螺线</title>

<script type="text/javascript">

function draw(id)

{

var canvas=document.getElementById(id);

if (canvas==null)

return false;

var context=canvas.getContext('2d');

context.fillStyle="#EEEEFF";

context.fillRect(0,0,300,300);

context.strokeStyle="red";

context.lineWidth=2;

var dig=Math.PI/32;

context.beginPath();

context.moveTo(150,150);

for (var i=1;i<=256;i++)

{

x=150+5*i*dig*Math.sin(i*dig);

y=150+5*i*dig*Math.cos(i*dig);

context.lineTo(x,y);

}

context.stroke();

}

</script>

</head>

<body onload="draw('myCanvas');">

<canvas id="myCanvas" width="300" height="300"></canvas>

</body>

</html>

将上述HTML代码保存到一个html文本文件中,再在浏览器中打开包含这段HTML代码的html文件,可以看到在浏览器窗口中绘制出一条阿基米德螺线,如图1所示。

图1  阿基米德螺线

2.李萨如曲线

一个质点同时在X轴和Y轴上作简谐运动形成的图形就是李萨如曲线。

李萨如曲线上的每一个点都可以用如下的公式进行表示:

X=A1sin(ω1t+ψ1)

Y=A2sin(ω2t+ψ2)

为绘制李萨如曲线,编写如下的HTML文件。

在程序中,设定 X=R*SIN(n*θ),Y= R*SIN(k*θ)  (0≤θ≤2π)

<!DOCTYPE html>

<head>

<title>李萨如曲线</title>

<script type="text/javascript">

function draw(id)

{

var canvas=document.getElementById(id);

if (canvas==null)

return false;

var context=canvas.getContext('2d');

context.fillStyle="#EEEEFF";

context.fillRect(0,0,450,450);

context.strokeStyle="red";

context.lineWidth=1;

var dig=Math.PI/64;

context.beginPath();

n=0;

b=30;

for (py=50;py<=450;py+=70)

{

n=n+1;  k=0;

for (px=50;px<=450;px+=70)

{

k++;

for (var i=0;i<=128;i++)

{

x=px+b*Math.sin(n*i*dig);

y=py-b*Math.sin(k*i*dig);

if (i==0)

{

context.moveTo(x,y);

bx=x;  by=y;

}

else

context.lineTo(x,y);

}

context.lineTo(bx,by);

context.closePath();

context.fill();

context.stroke();

}

}

}

</script>

</head>

<body onload="draw('myCanvas');">

<canvas id="myCanvas" width="450" height="450"></canvas>

</body>

</html>

将上述HTML代码保存到一个html文本文件中,再在浏览器中打开包含这段HTML代码的html文件,可以看到在浏览器窗口中绘制出6种李萨如曲线,如图2所示。

图2  李萨如曲线

由图2看出,当n=1,k=1时,李萨如曲线为一条直线。如果在Y坐标计算时加上一个相位,如修改为“y=py-b*Math.sin(k*i*dig+Math.PI/4);”,则绘制的李萨如曲线如图3所示。

图3 李萨如曲线

3.可设置参数的李萨如曲线

设李萨如曲线上的点(x,y)计算式为:

X=A1sin(mθ)

Y=A2sin(nθ) (0≤θ≤2π)

我们可以设置不同的参数A1、A2、m、n,绘制出不同的李萨如曲线。

编写的HTML代码如下。

<!DOCTYPE html>

<head>

<title>可设置参数的李萨如曲线</title>

<script type="text/javascript">

function draw(id)

{

var canvas=document.getElementById(id);

if (canvas==null)

return false;

var context=canvas.getContext('2d');

context.fillStyle="#EEEEFF";

context.fillRect(0,0,300,300);

context.strokeStyle="red";

context.lineWidth=1;

var dig=Math.PI/64;

context.beginPath();

var a1=eval(document.myForm.A1.value);

var a2=eval(document.myForm.A2.value);

var n=eval(document.myForm.N.value);

var m=eval(document.myForm.M.value);

px=150;   py=150;

for (var i=0;i<=128;i++)

{

x=px+a1*Math.sin(m*i*dig);

y=py-a2*Math.sin(n*i*dig);

if (i==0)

{

context.moveTo(x,y);

bx=x;  by=y;

}

else

context.lineTo(x,y);

}

context.lineTo(bx,by);

context.closePath();

context.stroke();

}

</script>

</head>

<body>

<form name="myForm">李萨如曲线上的点(x,y)计算式为:<br>

X=A1sin(mθ) <br> Y=A2sin(nθ)   (0≤θ≤2π) <br>

A1<input type=number name="A1" value=100 size=3>

A2<input type=number name="A2" value=100 size=3><br>

M&nbsp;&nbsp;<input type=number name="M" value=3 size=3>

N&nbsp;&nbsp;<input type=number name="N" value=5 size=3>

<input type=button value="确定" onClick="draw('myCanvas');">

</form><br>

<canvas id="myCanvas" width="300" height="300">

</canvas>

</body>

</html>

在浏览器中打开包含这段HTML代码的html文件,可以看到在浏览器窗口中,设置相应的参数后,单击“确定”按钮,可绘制出相应的李萨如曲线,如图4所示。

图4  李萨如曲线

4.由李萨如曲线构成的螺线

在0~6π的螺线上取72个点,在这72个点的位置绘制72个李萨如曲线,并且李萨如曲线随着R值的变大而逐渐变大。编写HTML文件如下。

<!DOCTYPE html>

<head>

<title>阿基米德螺线和李萨如曲线</title>

<script type="text/javascript">

function draw(id)

{

var canvas=document.getElementById(id);

if (canvas==null)

return false;

var context=canvas.getContext('2d');

context.fillStyle="#EEEEFF";

context.fillRect(0,0,500,300);

context.strokeStyle="red";

context.lineWidth=2;

var r=0;

for (var i=0;i<6*Math.PI;i+=Math.PI/12)

{

r+=3;

px=265+(r+40)*Math.sin(i);

py=150+(r/2+25)*Math.cos(i);

var dig=Math.PI/64;

context.beginPath();

for (var j=0;j<=128;j++)

{

x=px+r/7*Math.sin(j*dig);

y=py-r/14*Math.sin(j*dig+Math.PI/5);

if (j==0)

{

context.moveTo(x,y);

bx=x;  by=y;

}

else

context.lineTo(x,y);

}

context.lineTo(bx,by);

context.closePath();

context.stroke();

}

}

</script>

</head>

<body onload="draw('myCanvas');">

<canvas id="myCanvas" width="500" height="300"></canvas>

</body>

</html>

在浏览器中打开包含这段HTML代码的html文件,可以看到在浏览器窗口中绘制出如图5所示的由李萨如曲线构成的螺线图案。

图5  由李萨如曲线构成的螺线

JavaScript图形实例:阿基米德螺线的更多相关文章

  1. JavaScript图形实例:圆内螺线

    数学中有各式各样富含诗意的曲线,螺旋线就是其中比较特别的一类.螺旋线这个名词来源于希腊文,它的原意是“旋卷”或“缠卷”.例如,平面螺旋线便是以一个固定点开始向外逐圈旋绕而形成的曲线. 阿基米德螺线和黄 ...

  2. HFSS——平面正弦加载阿基米德螺旋线模型设计

    这学期开始进入HFSS的学习,这是软件应该是电磁相关专业必须掌握的软件之一.前几天图老师发布第一个模型设计任务,是关于平面正弦加载阿基米德螺旋线,拿到具体要求后,就去网上找资料,发现有关HFSS的资料 ...

  3. hdu1071(抛物线弓形面积阿基米德算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1071 题意:给出抛物线的顶点和它与一直线的两交点,求他们围成的面积: 思路: 可以直接求出他们的方程式 ...

  4. 阿基米德项目ALS矩阵分解算法应用案例

    转自:https://github.com/ceys/jdml/wiki/ALS 阿基米德项目ALS矩阵分解算法应用案例 编写人:ceys/youyis 最后更新时间:2014.5.12 一.算法描述 ...

  5. MT【237】阿基米德三角形的一些常见性质

    阿基米德三角形的常见性质:抛物线:$x^2=2py,AB$为抛物线的弦,$AQ,BQ$为切线,记$Q(x_0,y_0)$则$1)k_{QA}*k_{QB}=\dfrac{p}{2x_0}$$2)k_{ ...

  6. JavaScript图形实例:线段构图

    在“JavaScript图形实例:四瓣花型图案”和“JavaScript图形实例:蝴蝶结图案”中,我们绘制图形时,主要采用的方法是先根据给定的曲线参数方程计算出两点坐标,然后将两点用线段连接起来,线段 ...

  7. JavaScript图形实例:再谈IFS生成图形

    在“JavaScript图形实例:迭代函数系统生成图形”一文中,我们介绍了采用迭代函数系统(Iterated Function System,IFS)创建分形图案的一些实例.在该文中,仿射变换函数W的 ...

  8. JavaScript图形实例:随机SierPinski三角形

    在“JavaScript图形实例:SierPinski三角形”中,我们介绍了SierPinski三角形的基本绘制方法,在“JavaScript图形实例:迭代函数系统生成图形”一文中,介绍了采用IFS方 ...

  9. JavaScript图形实例:图形的旋转变换

    旋转变换:图形上的各点绕一固定点沿圆周路径作转动称为旋转变换.可用旋转角表示旋转量的大小. 旋转变换通常约定以逆时针方向为正方向.最简单的旋转变换是以坐标原点(0,0)为旋转中心,这时,平面上一点P( ...

随机推荐

  1. 【JMeter_05】创建第一个简单的接口脚本

    聚合数据:提供了很多开放的API,可以去练习使用https://www.juhe.cn/ 如果有小伙伴对HTTP协议不是很了解,可以看下这里 http://home.ustc.edu.cn/~xie1 ...

  2. belongsTo和hasOne的区别

    简单的讲就是,没有太大的区别,只是在逻辑上出现的思想的偏差(逻辑的合理性).belongsTo:可以理解为属于hasOne:可以理解为拥有 首先,我们创建两张表.user表 字段 id name pa ...

  3. ida 动态调试apk

    1,启动 android_x86_server 2 adb forward tcp:23946 tcp:23946 调试应用命令:adb shell am start -D -n com.droidh ...

  4. 利用requets库采集蘑菇租房网的租房信息

    前言:对于我们任何一个漂泊在外的打工者,租房似乎都是我们必经的一个经历,对于我们而言,选择性价比最高,最适合自己的房源至关重要,本文就将利用爬虫技术采集蘑菇租房网上指定的房源信息,后续可以利用这些信息 ...

  5. Linux下搭建redis(源码编译)

    [准备环境] Linux centos7 redis下载包  地址:http://www.redis.cn/download.html  前往下载稳定版本 [步骤] 1.下载成功后 把包上传到服务器 ...

  6. redis cluster集群中键的分布算法

    Redis Cluster Redis Cluster是Redis的作者 Antirez 提供的 Redis 集群方案 —— 官方多机部署方案,每组Redis Cluster是由多个Redis实例组成 ...

  7. Java 数组最佳指南,快收藏让它吃灰

    两年前,我甚至写过一篇文章,吐槽数组在 Java 中挺鸡肋的,因为有 List 谁用数组啊,现在想想那时候的自己好幼稚,好可笑.因为我只看到了表面现象,实际上呢,List 的内部仍然是通过数组实现的, ...

  8. python设计模式之模版方法设计模式

    我们在使用python的flask框架时,可能会经常用到生命周期函数如:before_request, before_first_request,或者信号等,刚开始学的时候就想只要写一个函数,然后加上 ...

  9. Java synthetic

    读完这篇文章你将会收获到 synthetic fields synthetic method synthetic class 概述 上一篇 Java 枚举 提及到编译成 class 文件之后.编译器会 ...

  10. 洛谷 P1194 【买礼物】

    这道题其实就是转化一个模型就可以了. 买了一个另外一个又优惠,其实就相当于在优惠的时候连一条边,因为不可能多买,所以就是建一棵最小生成树.最后因为肯定买了一件物品,要加上最初的单价. 代码: #inc ...