练习1.6

new-if的三个参数会先被执行,这样就会无限循环下去

练习1.7

(define (sqrt-iter last-guess guess x)
(if (good-enough? last-guess guess)
guess
(sqrt-iter guess (improve guess x) x))

另一种解法:

(define (good-enough? guess x)
(< (/ (abs (- (square guess) x)) guess) (* guess 0.0001)))

SICP习题练习的更多相关文章

  1. SICP 习题 (1.7) 解题总结

    SICP 习题 1.7 是对正文1.1.7节中的牛顿法求平方根的改进,改进部分是good-enough?过程. 原来的good-enough?是判断x和guess平方的差值是否小于0.001,这个过程 ...

  2. SICP 习题 (1.14)解题总结

    SICP 习题 1.14要求计算出过程count-change的增长阶.count-change是书中1.2.2节讲解的用于计算零钱找换方案的过程. 要解答习题1.14,首先你需要理解count-ch ...

  3. SICP 习题 (1.8) 解题总结

    SICP 习题1.8需要我们做的是按照牛顿法求平方根的方法做一个求立方根的过程. 所以说书中讲牛顿法求平方根的内容还是要好好理解,不然后面这几道题做起来就比较困难. 反过来,如果理解了牛顿法求平方根的 ...

  4. SICP 习题 (1.9) 解题总结

    SICP 习题 1.9 开始针对“迭代计算过程”和“递归计算过程”,有关迭代计算过程和递归计算过程的内容在书中的1.2.1节有详细讨论,要完成习题1.9,必须完全吃透1.2.1节的内容,不然的话,即使 ...

  5. SICP 习题 (1.10)解题总结

    SICP 习题 1.10 讲的是一个叫“Akermann函数”的东西,去百度查可以查到对应的中文翻译,叫“阿克曼函数”. 就像前面的解题总结中提到的,我是一个数学恐惧者,看着稍微复杂一点的什么函数我就 ...

  6. SICP 习题 (1.13) 解题总结

    SICP习题1.13要求证明Fib(n)是最接近φn/√5 的整数,其中φ=(1+√5)/2 .题目还有一个提示,提示解题者利用归纳法和斐波那契数的定义证明Fib(n)=(φn - ψn) / √5 ...

  7. SICP 习题 (2.7) 解题总结 : 定义区间数据结构

    SICP 习题 2.7 開始属于扩展练习,能够考虑不做,对后面的学习没什么影响.只是,假设上面的使用过程表示序对,还有丘奇计数你都能够理解的话,完毕这些扩展练习事实上没什么问题. 习题2.7是要求我们 ...

  8. SICP 习题 (2.6) 解题总结:丘奇计数

    SICP 习题 2.6 讲的是丘奇计数,是习题2.4 和 2.5的延续. 这里大师们想提醒我们思考的是"数"究竟是什么,在计算机系统里能够怎样实现"数".准备好 ...

  9. SICP 习题 (1.37)解题总结

    SICP 习题 1.37是一条非常长的题目,主要讲的是无穷连分式.无穷连分式对我来说又是一个陌生的概念,于是又去百度了一番,发现无穷连分式也是一个非常有意思的话题,涉及到无理数的表达.只是我建议大家还 ...

  10. SICP 习题 (1.43)解题总结

    SICP 习题 1.43 是前面两道题的延续,习题要求我们定义一个过程(repeat f n) .当中f是一个单參数过程.题目要求我们通过repeat过程将过程f调用n次,注意是嵌套调用n次,不是连续 ...

随机推荐

  1. 浅谈FFT(快速博立叶变换)&学习笔记

    0XFF---FFT是啥? FFT是一种DFT的高效算法,称为快速傅立叶变换(fast Fourier transform),它根据离散傅氏变换的奇.偶.虚.实等 特性,对离散傅立叶变换的算法进行改进 ...

  2. HDU - 2102 A计划(双层BFS)

    题目: 可怜的公主在一次次被魔王掳走一次次被骑士们救回来之后,而今,不幸的她再一次面临生命的考验.魔王已经发出消息说将在T时刻吃掉公主,因为他听信谣言说吃公主的肉也能长生不老.年迈的国王正是心急如焚, ...

  3. 在前后端分离的SpringBoot项目中集成Shiro权限框架

    参考[1].在前后端分离的SpringBoot项目中集成Shiro权限框架 参考[2]. Springboot + Vue + shiro 实现前后端分离.权限控制   以及跨域的问题也有涉及

  4. GPIO——端口位设置/清除寄存器BSRR,端口位清除寄存器BRR

    端口位设置/复位寄存器BSRR: 注:如果同时设置了BSy和BRy的对应位,BSy位起作用. 位31:16  BRy: 清除端口x的位y (y = 0…15)      这些位只能写入并只能以字(16 ...

  5. The Text Splitting (将字符串分成若干份,每份长度为p或q)

    Description You are given the string s of length n and the numbers p, q. Split the string s to piece ...

  6. C51 使用端口 个人笔记

    使用整个端口的8个引脚: 八个引脚,需要8位2进制,2位十六进制 #define P0 led led = 0x3f; //led = ~0x3f; 使用某个端口的某一个引脚 sbit led = P ...

  7. 在docker下面安装Nginx PHP mysql let's encrypt

    最近自己在弄了个Nginx PHP Mysql Let's encrypt的docker,下面记录一下 1)先装 Let's encrypt docker run --rm -p 80:80 -p 4 ...

  8. Django:(7)auth用户认证组件 & 中间件

    用户认证组件 用户认证组件: 功能:用session记录登陆验证状态 前提:用户表:django自带的auth_user 创建超级用户的命令: python manage.py createsuper ...

  9. RelativeLayout属性大全

  10. POJ 1182_食物链

    题意: 三种动物A,B,C,A吃B,B吃C,C吃A, 有人用两种说法对这N个动物所构成的食物链关系进行描述: 第一种说法是"1 X Y",表示X和Y是同类. 第二种说法是" ...