并不对劲的bzoj4652:loj2085:uoj221:p1587:[NOI2016]循环之美
题目大意
对于已知的十进制数\(n\)和\(m\),在\(k\)进制下,有多少个数值上互不相等的纯循环小数,可以用\(x/y\)表示,其中 \(1\leq x\leq n,1\leq y\leq m\) (\(n,m\leq10^9,k\leq2000\))
题解
这个人(点这里)讲得很清楚\(\color{white}{\text{shing太强了}}\)
代码
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<iomanip>
#include<iostream>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#define rep(i,x,y) for(register int i=(x);i<=(y);++i)
#define dwn(i,x,y) for(register int i=(x);i>=(y);--i)
#define pii pair<int,int>
#define mp make_pair
#define fi first
#define se second
#define maxn 2500010
#define lim 2500000
#define maxl 2010
#define LL long long
using namespace std;
int read()
{
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)&&ch!='-')ch=getchar();
if(ch=='-')f=-1,ch=getchar();
while(isdigit(ch))x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return x*f;
}
void write(LL x)
{
if(x==0){putchar('0'),putchar('\n');return;}
int f=0;char ch[20];
if(x<0)putchar('-'),x=-x;
while(x)ch[++f]=x%10+'0',x/=10;
while(f)putchar(ch[f--]);
putchar('\n');
return;
}
int n,m,k,p[maxn],cnt,numk[100],num,f[maxn],no[maxn];
LL mu[maxn],ans;
map<int,LL>M;
map<pii,LL>G;
int gcd(int x,int y){if(x>y)swap(x,y);if(!x)return y;return gcd(y%x,x);}
LL getm(int x)
{
if(x<=lim)return mu[x];
if(M[x])return M[x];
LL res=1;
for(int l=2,r=0;l<=x;l=r+1)r=x/(x/l),res-=(LL)(r-l+1)*(LL)getm(x/l);
M[x]=res;
return res;
}
LL g(int x,int y)
{
if(!x)return getm(y);
if(y<=1)return y;
if(G[mp(x,y)])return G[mp(x,y)];
return G[mp(x,y)]=g(x-1,y)+g(x,y/numk[x]);
}
int main()
{
n=read(),m=read(),k=read();
no[1]=mu[1]=1;
rep(i,1,lim)
{
if(!no[i])mu[i]=-1,p[++cnt]=i;
for(int j=1;j<=cnt&&p[j]*i<=lim;j++)
{
no[p[j]*i]=1;
if(i%p[j]==0){mu[i*p[j]]=0;break;}
else mu[i*p[j]]=-mu[i];
}
}
rep(i,2,lim)mu[i]+=mu[i-1];
rep(i,1,k)f[i]=f[i-1]+(gcd(i,k)==1?1:0);
for(int i=1;p[i]<=k;i++)if(k%p[i]==0)numk[++num]=p[i];
for(int l=1,r=0;l<=min(n,m);l=r+1)r=min(n/(n/l),m/(m/l)),ans+=(LL)(g(num,r)-g(num,l-1))*(LL)(n/l)*(LL)(f[(m/l)%k]+(LL)((m/l)/k)*(LL)f[k]);
write(ans);
return 0;
}
并不对劲的bzoj4652:loj2085:uoj221:p1587:[NOI2016]循环之美的更多相关文章
- 洛谷P1587 [NOI2016]循环之美
传送门 不会,先坑着 https://kelin.blog.luogu.org/solution-p1587 //minamoto #include<cstdio> #include< ...
- luogu P1587 [NOI2016]循环之美
传送门 首先要知道什么样的数才是"纯循环数".打表可以发现,这样的数当且仅当分母和\(k\)互质,这是因为,首先考虑除法过程,每次先给当前余数\(*k\),然后对分母做带余除法,那 ...
- [UOJ#221][BZOJ4652][Noi2016]循环之美
[UOJ#221][BZOJ4652][Noi2016]循环之美 试题描述 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在 k 进制下,一个数的小数部 ...
- luogu 1587 [NOI2016]循环之美
LINK:NOI2016循环之美 这道题是 给出n m k 求出\(1\leq i\leq n,1\leq j\leq m\) \(\frac{i}{j}\)在k进制下是一个纯循环的. 由于数值相同的 ...
- BZOJ4652 NOI2016循环之美(莫比乌斯反演+杜教筛)
因为要求数值不同,不妨设gcd(x,y)=1.由提示可以知道,x/y是纯循环小数的充要条件是x·klen=x(mod y).因为x和y互质,两边同除x,得klen=1(mod y).那么当且仅当k和y ...
- bzoj4652 [Noi2016]循环之美
Description 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在k进制下,一个数的小数部分是纯循环的,那么它就是美的.现在,牛牛想知道:对于已知 ...
- BZOJ4652 [Noi2016]循环之美 【数论 + 莫比乌斯反演 + 杜教筛】
题目链接 BZOJ 题解 orz 此题太优美了 我们令\(\frac{x}{y}\)为最简分数,则\(x \perp y\)即,\(gcd(x,y) = 1\) 先不管\(k\)进制,我们知道\(10 ...
- BZOJ4652: [Noi2016]循环之美(莫比乌斯反演,杜教筛)
Description 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在 k 进制下,一个数的小数部分是纯循环的,那么它就是美的.现在,牛牛想知道:对 ...
- 题解 P1587 【[NOI2016]循环之美】
知识点:莫比乌斯反演 积性函数 杜教筛 废话前言: 我是古明地恋,写这篇题解的人已经被我 请各位读者自行无视搞事的恋恋带有删除线的内容,谢谢茄子. 这道题目本身并不难,但是公式推导/代码过程中具有迷惑 ...
随机推荐
- Leetcode 312.戳气球
戳气球 有 n 个气球,编号为0 到 n-1,每个气球上都标有一个数字,这些数字存在数组 nums 中. 现在要求你戳破所有的气球.每当你戳破一个气球 i 时,你可以获得 nums[left] * n ...
- Leetcode 224.基本计算器
基本计算器 实现一个基本的计算器来计算一个简单的字符串表达式的值. 字符串表达式可以包含左括号 ( ,右括号 ),加号 + ,减号 -,非负整数和空格 . 示例 1: 输入: "1 + 1 ...
- 【01背包变形】Robberies HDU 2955
http://acm.hdu.edu.cn/showproblem.php?pid=2955 [题意] 有一个强盗要去几个银行偷盗,他既想多抢点钱,又想尽量不被抓到.已知各个银行 的金钱数和被抓的概率 ...
- To_Date函数用法
spl> select * from emp where dates between to_date('2007-06-12 10:00:0 ...
- 任意两点间最短距离floyd-warshall ---- POJ 2139 Six Degrees of Cowvin Bacon
floyd-warshall算法 通过dp思想 求任意两点之间最短距离 重复利用数组实现方式dist[i][j] i - j的最短距离 for(int k = 1; k <= N; k++) f ...
- 深入理解计算机操作系统——第10章:UNIX IO,打开,关闭,读写文件
系统级IO:输入输出是主存与外部设备(磁盘,终端,网络)之间拷贝数据的过程 输入:从IO设备拷贝数据到主存中 输出:从主存中拷贝数据到IO设备中 10.1 unix IO 所有的IO设备都被模型化为文 ...
- gcc,gdb基础学习1
gcc: (1)gcc -O1 -S code.c 这里的-S可以的到code.c的汇编(只进行了预处理和编译这:两个阶段形成 了汇编代码code·s) (2)gcc -c code.c 这里 ...
- Android服务Service
安卓Service服务 一 Service简介 Service是运行在后台的,没有界面的,用来处理耗时比较长的.Service不是一个单独的进程,也不是一个单独的线程. Service有两种类型 ...
- 钱币兑换问题---hdu1284(完全背包)
Problem Description 在一个国家仅有1分,2分,3分硬币,将钱N兑换成硬币有很多种兑法.请你编程序计算出共有多少种兑法. Input 每行只有一个正整数N,N小于32768. ...
- poj——1274 The Perfect Stall
poj——1274 The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 25709 A ...