POJ 2318 TOYS (计算几何,叉积判断)
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 8661 | Accepted: 4114 |
Description
Mom and dad have a problem - their child John never puts his toys
away when he is finished playing with them. They gave John a rectangular
box to put his toys in, but John is rebellious and obeys his parents by
simply throwing his toys into the box. All the toys get mixed up, and
it is impossible for John to find his favorite toys.
John's parents came up with the following idea. They put cardboard
partitions into the box. Even if John keeps throwing his toys into the
box, at least toys that get thrown into different bins stay separated.
The following diagram shows a top view of an example toy box.

For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.
Input
input file contains one or more problems. The first line of a problem
consists of six integers, n m x1 y1 x2 y2. The number of cardboard
partitions is n (0 < n <= 5000) and the number of toys is m (0
< m <= 5000). The coordinates of the upper-left corner and the
lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The
following n lines contain two integers per line, Ui Li, indicating that
the ends of the i-th cardboard partition is at the coordinates (Ui,y1)
and (Li,y2). You may assume that the cardboard partitions do not
intersect each other and that they are specified in sorted order from
left to right. The next m lines contain two integers per line, Xj Yj
specifying where the j-th toy has landed in the box. The order of the
toy locations is random. You may assume that no toy will land exactly on
a cardboard partition or outside the boundary of the box. The input is
terminated by a line consisting of a single 0.
Output
output for each problem will be one line for each separate bin in the
toy box. For each bin, print its bin number, followed by a colon and one
space, followed by the number of toys thrown into that bin. Bins are
numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate
the output of different problems by a single blank line.
Sample Input
5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0
Sample Output
0: 2
1: 1
2: 1
3: 1
4: 0
5: 1 0: 2
1: 2
2: 2
3: 2
4: 2
Hint
Source
/************************************************************
* Author : kuangbin
* Email : kuangbin2009@126.com
* Last modified : 2013-07-13 17:15
* Filename : POJ2318TOYS.cpp
* Description :
* *********************************************************/ #include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#include <map>
#include <vector>
#include <set>
#include <string>
#include <math.h> using namespace std;
struct Point
{
int x,y;
Point(){}
Point(int _x,int _y)
{
x = _x;y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
int operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
int operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
};
struct Line
{
Point s,e;
Line(){}
Line(Point _s,Point _e)
{
s = _s;e = _e;
}
}; int xmult(Point p0,Point p1,Point p2) //计算p0p1 X p0p2
{
return (p1-p0)^(p2-p0);
}
const int MAXN = ;
Line line[MAXN];
int ans[MAXN];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n,m,x1,y1,x2,y2;
bool first = true;
while(scanf("%d",&n) == && n)
{
if(first)first = false;
else printf("\n");
scanf("%d%d%d%d%d",&m,&x1,&y1,&x2,&y2);
int Ui,Li;
for(int i = ;i < n;i++)
{
scanf("%d%d",&Ui,&Li);
line[i] = Line(Point(Ui,y1),Point(Li,y2));
}
line[n] = Line(Point(x2,y1),Point(x2,y2));
int x,y;
Point p;
memset(ans,,sizeof(ans));
while( m-- )
{
scanf("%d%d",&x,&y);
p = Point(x,y);
int l = ,r = n;
int tmp;
while( l <= r)
{
int mid = (l + r)/;
if(xmult(p,line[mid].s,line[mid].e) < )
{
tmp = mid;
r = mid - ;
}
else l = mid + ;
}
ans[tmp]++;
}
for(int i = ; i <= n;i++)
printf("%d: %d\n",i,ans[i]);
}
return ;
}
POJ 2318 TOYS (计算几何,叉积判断)的更多相关文章
- POJ 2318 TOYS 利用叉积判断点在线段的那一侧
题意:给定n(<=5000)条线段,把一个矩阵分成了n+1分了,有m个玩具,放在为位置是(x,y).现在要问第几个位置上有多少个玩具. 思路:叉积,线段p1p2,记玩具为p0,那么如果(p1p2 ...
- POJ 2318 TOYS(叉积+二分)
题目传送门:POJ 2318 TOYS Description Calculate the number of toys that land in each bin of a partitioned ...
- poj 2318 TOYS (二分+叉积)
http://poj.org/problem?id=2318 TOYS Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 101 ...
- POJ 2318 TOYS【叉积+二分】
今天开始学习计算几何,百度了两篇文章,与君共勉! 计算几何入门题推荐 计算几何基础知识 题意:有一个盒子,被n块木板分成n+1个区域,每个木板从左到右出现,并且不交叉. 有m个玩具(可以看成点)放在这 ...
- POJ 2318 TOYS (叉乘判断)
<题目链接> 题目大意: 给出矩形4个点和n个挡板俩顶点的位置,这n个挡板将该矩形分成 n+1块区域,再给你m个点的坐标,然你输出每个区域内有几个点. 解题思路: 用叉乘即可简单判断点与直 ...
- poj 2318 TOYS(计算几何 点与线段的关系)
TOYS Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 12015 Accepted: 5792 Description ...
- POJ 2318 TOYS(计算几何)
跨产品的利用率推断点线段向左或向右,然后你可以2分钟 代码: #include <cstdio> #include <cstring> #include <algorit ...
- TOYS - POJ 2318(计算几何,叉积判断)
题目大意:给你一个矩形的左上角和右下角的坐标,然后这个矩形有 N 个隔板分割成 N+1 个区域,下面有 M 组坐标,求出来每个区域包含的坐标数. 分析:做的第一道计算几何题目....使用叉积判断方 ...
- 向量的叉积 POJ 2318 TOYS & POJ 2398 Toy Storage
POJ 2318: 题目大意:给定一个盒子的左上角和右下角坐标,然后给n条线,可以将盒子分成n+1个部分,再给m个点,问每个区域内有多少各点 这个题用到关键的一步就是向量的叉积,假设一个点m在 由ab ...
- POJ 2318 TOYS (叉积+二分)
题目: Description Calculate the number of toys that land in each bin of a partitioned toy box. Mom and ...
随机推荐
- Codeforces Round #272 (Div. 2) C. Dreamoon and Sums (数学 思维)
题目链接 这个题取模的时候挺坑的!!! 题意:div(x , b) / mod(x , b) = k( 1 <= k <= a).求x的和 分析: 我们知道mod(x % b)的取值范围为 ...
- Windows 7 32位上硬盘安装linux[ubuntu13.04] 双系统
本内容介绍如何在window7上安装ubuntu双系统 一.准备工具 1. EasyBCD : 用来制作引导菜单选项 2.Wingrub : 用来确定磁盘文件Linux表示法位置 3.分区助手 :用来 ...
- Java面向对象编程概述
一. 01.软件开发经历周期: 软件分析:分析问题领域,了解客户的需求 软件设计:确定软件的总体结构,把整个软件系统划分为大大小小的多个子系统,设计每个子系统的具体结构 软件编码:用选定的编程语言来编 ...
- HDU 1244 Max Sum Plus Plus Plus
虽然这道题看起来和 HDU 1024 Max Sum Plus Plus 看起来很像,可是感觉这道题比1024要简单一些 前面WA了几次,因为我开始把dp[22][maxn]写成dp[maxn][2 ...
- KVC&KVO&NSNotification
KVC,即是指 NSKeyValueCoding,一个非正式的 Protocol,提供一种机制来间接访问对象的属性.KVO 就是基于 KVC 实现的关键技术之一. 一个对象拥有某些属性.比如说,一个 ...
- 【英语】Bingo口语笔记(34) - Hit系列
hit it off 合得来 hit the bottle 喝醉酒 hit the spot 正合要求,恰到好处
- git常用知识整理
分布式和集中版本控制的区别 分布式版本控制系统与集中式版本控制系统有何不同呢?首先,分布式版本控制系统根本没有“中央服务器”,每个人的电脑上都是一个完整的版本库,这样,你工作的时候,就不需要联网了,因 ...
- js细节
1.小心函数中的“s“ getElementsByTagName:得到的是数组 getElementById:得到的是对象 2.js 中设置哪一项被选中 subject.selectedIndex = ...
- crontab 每月最后一天
0 8 28-31 * * [ `date -d tomorrow +%e` -eq 1 ] && do-something 我觉得能想到这种方法的,都是经验丰富的人.程序员们,想 ...
- Drupal如何实现类的自动加载?
Drupal通过spl_autoload_register()注册类加载器实现自动加载: function _drupal_bootstrap_database() { // ... .... spl ...