https://www.cnblogs.com/Gloid/p/9538413.html 基本思路没有太大差别。得到2n=d(a2+3b2),其中d=gcd(n-x,n+x),n-x==a2&&n+x==3b2||n-x==3a2&&n+x==b2。于是枚举d,然后枚举b。复杂度玄学。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')) c=getchar();return c;}
ll gcd(ll n,ll m){return m==?n:gcd(m,n%m);}
int T;ll n,m;
bool issqr(ll n){return (ll)(sqrt(n))*(ll)(sqrt(n))==n;}
int calc(ll n,ll d)
{
int s=;
for (int i=;d*i*i<=n;i++)
{
ll b=1ll*i*i,a=m/d-b;
if (a%==&&issqr(a/)&&gcd(a,b)==) s++;
}
for (int i=;*d*i*i<=n;i++)
{
ll b=3ll*i*i,a=m/d-b;
if (issqr(a)&&gcd(a,b)==) s++;
}
return s;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4544.in","r",stdin);
freopen("bzoj4544.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read();
while (T--)
{
cin>>n;m=n<<;
int ans=;
for (int d=;1ll*d*d<=m;d++)
if (m%d==)
{
ans+=calc(n,d);
if (m/d!=d) ans+=calc(n,m/d);
}
ans*=;ans+=;
cout<<ans<<endl;
}
return ;
}

BZOJ4544 椭圆上的整点(数论)的更多相关文章

  1. bzoj4544 椭圆上的整点

    我会所有推理..... Q1:真的这么暴力的统计答案? Q2:蜜汁统计答案.... Q3:为什么不考虑3在不同的位置的情况

  2. BZOJ 4544: 椭圆上的整点

    Sol 数学. 跟圆上的整点一样...TA写了个积性函数的算法...以后再说吧... \(x^2+3y^2=r^2\) \(3y^2=r^2-x^2\) \(3y^2=(r-x)(r+x)\) \(y ...

  3. 【bzoj1041】[HAOI2008]圆上的整点 数论

    题目描述 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. 输入 只有一个正整数n,n<=2000 000 000 输出 整点个数 样例输入 4 样例输出 4 题解 数 ...

  4. BZOJ1041:[HAOI2008]圆上的整点(数论)

    Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...

  5. 【BZOJ1041】圆上的整点(数论)

    [BZOJ1041]圆上的整点(数论) 题面 BZOJ 洛谷 题解 好神仙的题目啊. 安利一个视频,大概是第\(7\)到\(19\)分钟的样子 因为要质因数分解,所以复习了一下\(Pollard\_r ...

  6. 2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ π )

    2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ \(\pi\) ) https://www.luogu.com.cn/problem/P2508 题意: 求一个给定的圆 \( ...

  7. BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4210  Solved: 1908[Submit][Sta ...

  8. BZOJ 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3621  Solved: 1605[Submit][Sta ...

  9. BZOJ 1041 圆上的整点

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1041 题意:求圆x^2+y^2=r^2上的整点. 思路:由于对称性,我们只需要计算第一象 ...

随机推荐

  1. linux链路聚合

    配置聚合连接(网卡绑定,链路聚合): eth0 ================>>虚拟网卡team eth1 配置聚合连接 [root@Centos7-Server ~]# nmcli ...

  2. 富文本编辑器 wangEditor.js

    1.引用 wangEditor 相关js  和 css 下载地址:https://files.cnblogs.com/files/kitty-blog/WangEditor.zip 3.页面: < ...

  3. 'sessionFactory' or 'hibernateTemplate' is required

    网上都是说在dao中未注入  sessionFactory,然而我有 于是排除 @Autowired public FlightDaoImpl(@Qualifier(value = "ses ...

  4. 在Liunx上搭建FTP并配置用户权限

    伴随着.Net Core的开源,公司前几天上了新的Liunx服务器,我在前几篇文章中介绍了如何搭建环境以及部署.Net Core应用. 然后,今天客户和我说想自己给网站做推广,需要用FTP链接我们的服 ...

  5. 基于OMAPL:Linux3.3内核的编译

    基于OMAPL:Linux3.3内核的编译 OMAPL对应3个版本的linux源代码,分别是:Linux-3.3.Linux-2.6.37.Linux2.6.33,这里的差距在于Linux2,缺少SY ...

  6. ruby net/http模块使用

    ruby中的NET::HTTP:这里暂时先列出几个固定用法: 其中一,二不支持请求头设置(header取ruby默认值),只能用于基本的请求,不支持持久连接,如果您执行许多HTTP请求,则不推荐它们: ...

  7. C# 生成机器码

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  8. [转载]三小时学会Kubernetes:容器编排详细指南

    原翻译by梁晓勇 原英文:Learn Kubernetes in Under 3 Hours: A Detailed Guide to Orchestrating Containers 我很奇怪,为什 ...

  9. HyperLedger Fabric 1.4 交易流程(6.3)

    区块链最主要的特性之一是去中心化,没有了中心机构的集中处理,为了达成数据的一致性,就需要网络中全民参与管理,并以某种方法达成共识,所以区块链的交易流程也就是共识的过程.       在Fabric中, ...

  10. Kubernetes-GC

    Kubernetes集群中垃圾回收(Garbage Collection)机制由kubelet完成.kubelet定期清理不再使用的容器和镜像,每分钟进行一次容器的GC操作,每五分钟进行一次镜像的GC ...