BZOJ4544 椭圆上的整点(数论)
https://www.cnblogs.com/Gloid/p/9538413.html 基本思路没有太大差别。得到2n=d(a2+3b2),其中d=gcd(n-x,n+x),n-x==a2&&n+x==3b2||n-x==3a2&&n+x==b2。于是枚举d,然后枚举b。复杂度玄学。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')) c=getchar();return c;}
ll gcd(ll n,ll m){return m==?n:gcd(m,n%m);}
int T;ll n,m;
bool issqr(ll n){return (ll)(sqrt(n))*(ll)(sqrt(n))==n;}
int calc(ll n,ll d)
{
int s=;
for (int i=;d*i*i<=n;i++)
{
ll b=1ll*i*i,a=m/d-b;
if (a%==&&issqr(a/)&&gcd(a,b)==) s++;
}
for (int i=;*d*i*i<=n;i++)
{
ll b=3ll*i*i,a=m/d-b;
if (issqr(a)&&gcd(a,b)==) s++;
}
return s;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4544.in","r",stdin);
freopen("bzoj4544.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read();
while (T--)
{
cin>>n;m=n<<;
int ans=;
for (int d=;1ll*d*d<=m;d++)
if (m%d==)
{
ans+=calc(n,d);
if (m/d!=d) ans+=calc(n,m/d);
}
ans*=;ans+=;
cout<<ans<<endl;
}
return ;
}
BZOJ4544 椭圆上的整点(数论)的更多相关文章
- bzoj4544 椭圆上的整点
我会所有推理..... Q1:真的这么暴力的统计答案? Q2:蜜汁统计答案.... Q3:为什么不考虑3在不同的位置的情况
- BZOJ 4544: 椭圆上的整点
Sol 数学. 跟圆上的整点一样...TA写了个积性函数的算法...以后再说吧... \(x^2+3y^2=r^2\) \(3y^2=r^2-x^2\) \(3y^2=(r-x)(r+x)\) \(y ...
- 【bzoj1041】[HAOI2008]圆上的整点 数论
题目描述 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. 输入 只有一个正整数n,n<=2000 000 000 输出 整点个数 样例输入 4 样例输出 4 题解 数 ...
- BZOJ1041:[HAOI2008]圆上的整点(数论)
Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...
- 【BZOJ1041】圆上的整点(数论)
[BZOJ1041]圆上的整点(数论) 题面 BZOJ 洛谷 题解 好神仙的题目啊. 安利一个视频,大概是第\(7\)到\(19\)分钟的样子 因为要质因数分解,所以复习了一下\(Pollard\_r ...
- 2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ π )
2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ \(\pi\) ) https://www.luogu.com.cn/problem/P2508 题意: 求一个给定的圆 \( ...
- BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4210 Solved: 1908[Submit][Sta ...
- BZOJ 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3621 Solved: 1605[Submit][Sta ...
- BZOJ 1041 圆上的整点
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1041 题意:求圆x^2+y^2=r^2上的整点. 思路:由于对称性,我们只需要计算第一象 ...
随机推荐
- MAC系统如何显示隐藏文件解决方法
苹果Mac OS 操作系统下,隐藏文件默认为隐藏状态,隐藏文件是否显示有多种方法可以设置. 方法一: 打开终端,输入命令行 1.显示Mac隐藏文件的命令: defaults write com.app ...
- Centos6.5 安装python2.7.14
2018-06-30 因为Centos6.5系统默认使用,python2.6.6.最近在学python.老师推荐将2.6.6升级至2.7.14.所以以留此文,怕哪天脑子短路好回来看看... >1 ...
- angularjs路由不断刷新当前页面
最近做项目遇到个问题,使用angular-route的时候,第一次点击 [按钮 a]会进入按钮a对应的控制器,接着再次点击a按钮的的时候就不会进入控制器了.我想要的效果是每次点击都能进入control ...
- scala成长之路(6)函数入门
众所周知,scala作为一门极客型的函数式编程语言,支持的特性包括: 函数拥有“一等公民”身份: 支持匿名函数(函数字面量) 支持高阶函数 支持闭包 部分应用函数 柯里化 首先需要指出,在scala中 ...
- centOS下更新yum源
CentOS下更新yum源 1.使用如下命令,备份/etc/yum.repos.d/CentOS-Base.repo. cp /etc/yum.repos.d/CentOS-Base.repo /et ...
- JDK8新垃圾回收机制--G1垃圾回收机制
G1全称是Garbage First Garbage Collector,使用G1的目的是简化性能优化的复杂性.例如,G1的主要输入参数是初始化和最大Java堆大小.最大GC中断时间. G1 GC由Y ...
- python3 练习题100例 (二十三)与7相关的数
与7相关的数:如果一个正整数,它能被7整除或者它的十进制表示法中某个位数上的数字为7,则称之为与7相关的数.(10分) 题目内容: 现在我们给定一个正整数n(n<1000),求所有小于等于n的与 ...
- 相亲数--Python
想亲数:在遥远的古代,人们发现某些自然数之间有特殊的关系:如果两个数a和b,a的所有除本身以外的因数之和等于b,b的所有除本身以外的因数之和等于a,则称a,b是一对相亲数 code: def sumF ...
- UVA11988 Broken Keyboard (a.k.a. Beiju Text)【数组模拟链表】
参考:https://blog.csdn.net/lianai911/article/details/41831645 #include <iostream> #include <c ...
- 4 class类 web服务器
1.换行符 2.pycharm 连接Ubuntu 1)添加环境变量 2)查看ip 3)配置目录 4)上传或者下载 3.面向对象抽象web服务器 1)版本1:类 class HttpServer(obj ...