设$d=\gcd(a,b),a=xd,b=yd$,则$a+b|ab$等价于$x+y|xyd$。

因为$x,y$互质,所以$x+y|d$。

假设$x<y$,那么对于固定的$x,y$,有$\lfloor\frac{n}{y(x+y)}\rfloor$个$d$。

枚举$y$,设$m=\lfloor\frac{n}{y}\rfloor$,则它的贡献为:

\[\begin{eqnarray*}
&&\sum_{i=1}^{y-1}[\gcd(i,y)=1]\lfloor\frac{m}{i+y}\rfloor\\
&=&\sum_{i=1}^{y-1}\sum_{d|\gcd(i,y)}\mu(d)\lfloor\frac{m}{i+y}\rfloor\\
&=&\sum_{i=1}^{y-1}\sum_{d|i,d|y}\mu(d)\lfloor\frac{m}{i+y}\rfloor\\
&=&\sum_{d|y}\mu(d)\sum_{d|i}\lfloor\frac{m}{i+y}\rfloor
\end{eqnarray*}\]

枚举$y$的约数$d$,再分段计算$\sum_{d|i}\lfloor\frac{m}{i+y}\rfloor$即可。

时间复杂度$O(N^\frac{3}{4}\log N)$。

#include<cstdio>
typedef long long ll;
const int N=46500,M=505030;
int n,m,lim,i,j,d,l,r,vis[N],tot,p[N],mu[N],g[N],v[M],nxt[M],ed;ll ans,t;
inline void add(int x,int y){v[++ed]=y;nxt[ed]=g[x];g[x]=ed;}
int main(){
for(scanf("%d",&n);(ll)lim*(lim+1)<=n;lim++);
for(mu[1]=1,i=2;i<lim;i++){
if(!vis[i])p[tot++]=i,mu[i]=-1;
for(j=0;j<tot;j++){
if(i*p[j]>=lim)break;
vis[i*p[j]]=1;
if(i%p[j])mu[i*p[j]]=-mu[i];else break;
}
}
for(i=1;i<lim;i++)if(mu[i])for(j=i;j<lim;j+=i)add(j,i);
for(i=2;i<lim;i++)for(m=n/i,j=g[i];j;j=nxt[j]){
for(t=0,d=v[j],l=1;l<i&&i+l<=m;l=r+1){
r=m/(m/(i+l))-i;
if(r>=i)r=i-1;
t+=(ll)(r/d-(l-1)/d)*(m/(i+l));
}
ans+=t*mu[d];
}
return printf("%lld",ans),0;
}

  

BZOJ2671 : Calc的更多相关文章

  1. BZOJ2671 Calc 【莫比乌斯反演】

    题目链接 BZOJ2671 题解 令\(d = (a,b)\),\(a = dx,b = dy\) 那么有 \[ \begin{aligned} d(x + y) | d^2xy \\ (x + y) ...

  2. BZOJ2671 Calc(莫比乌斯反演)

    两个多月之前写的题,今天因为看到一道非常相似的题就翻出来了,发现完全不会,没救. 感觉这个题其实第一步是最难想到的,也是最重要的. 设d=gcd(a,b).那么a=yd,b=xd,且gcd(x,y)= ...

  3. 【BZOJ2671】Calc(莫比乌斯反演)

    [BZOJ2671]Calc 题面 BZOJ 给出N,统计满足下面条件的数对(a,b)的个数: 1.\(1\le a\lt b\le N\) 2.\(a+b\)整除\(a*b\) 我竟然粘了题面!!! ...

  4. 【BZOJ2671】Calc 数学

    [BZOJ2671]Calc Description 给出N,统计满足下面条件的数对(a,b)的个数: 1.1<=a<b<=N 2.a+b整除a*b Input 一行一个数N Out ...

  5. BZOJ2506: calc

    Description            给一个长度为n的非负整数序列A1,A2,…,An.现有m个询问,每次询问给出l,r,p,k,问满足l<=i<=r且Ai mod p = k的值 ...

  6. css绘制特殊图形,meida查询,display inline-box间隙问题以及calc()函数

    本文同时发表于本人个人网站 www.yaoxiaowen.com 距离上一篇文章已经一个月了,相比于写代码,发现写文章的确是更需要坚持的事情.言归正传,梳理一下这一个月来,在写ife任务时,有必要记录 ...

  7. 利用calc计算宽度

    width:calc(100% - 40px)可用 + - * / 进行计算(ie9+) 注:计算符号前后必须跟上空格.

  8. CSS3的calc()使用

    CSS3的calc()使用 calc是英文单词calculate(计算)的缩写,是css3的一个新增的功能,用来指定元素的长度.比如说,你可以使用calc()给元素的border.margin.pad ...

  9. 理解CSS中的数学表达式calc()

    前面的话 数学表达式calc()是CSS中的函数,主要用于数学运算.使用calc()为页面元素布局提供了便利和新的思路.本文将介绍calc()的相关内容 定义 数学表达式calc()是calculat ...

随机推荐

  1. 蓝桥杯 带分数 DFS应用

    问题描述 100 可以表示为带分数的形式:100 = 3 + 69258 / 714. 还可以表示为:100 = 82 + 3546 / 197. 注意特征:带分数中,数字1~9分别出现且只出现一次( ...

  2. 网络基础知识(一)wireshark 三次握手实践

    wireshark 三次握手简介 192.168.18.120 IP地址为我的本机虚拟机IP地址 过滤设置:ip.addr == 192.168.18.120 (ip.addr == 192.168. ...

  3. Java SSM框架之MyBatis3(六)MyBatis之参数传递

    一.单个参数  StudentParamsMapper package cn.cnki.ref.mapper; import cn.cnki.ref.pojo.Student; public inte ...

  4. HDU 3371 Connect the Cities 最小生成树(和关于sort和qsort的一些小发现)

    解题报告:有n个点,然后有m条可以添加的边,然后有一个k输入,表示一开始已经有k个集合的点,每个集合的点表示现在已经是连通的了. 还是用并查集加克鲁斯卡尔.只是在输入已经连通的集合的时候,通过并查集将 ...

  5. supperset (python 2.7.12 + mysql)记录

    网上看到superset,比较感兴趣,虚机上搭一下,记录操作过程. 版本信息:CentOS 6.6 + python 2.7.12 + mysql 5.1.73 + setuptools 36.5.0 ...

  6. HTTP Methods

    简介 HTTP 定义了一组请求方法,以表明要对给定资源执行的操作.指示针对给定资源要执行的期望动作, 虽然他们也可以是名词,但这些请求方法有时被称为HTTP动词.每一个请求方法都实现了不同的语义,但一 ...

  7. 记关于vue-cli3 本地代理模拟数据的实践

    网上说的基本都是使用express或http-server作为服务器或其它什么东西自己把玩php也有些年头,就用php好了 服务环境 apache,php先配置好隐藏php后缀扩展名: 在httpd. ...

  8. python3之安装、pip、setuptools

    1.python3安装 下载地址:https://www.python.org/ftp/python/3.6.5/Python-3.6.5.tgz #安装环境centOS 7 #安装依赖包: yum ...

  9. QTP设置共享对象库

    第一步:把需要加到共享对象库中的各个用例脚本的对象库,分别导出成.tsr文件. 操作方法:先用QTP打开已经录制完毕的脚本后,选择Resources-->Object Repository.然后 ...

  10. xtrabackup 恢复单个表【转】

    一.安装与备份 1. 下载安装XtraBackup$wget http://www.percona.com/redir/downloads/XtraBackup/LATEST/binary/tarba ...