BZOJ2671 : Calc
设$d=\gcd(a,b),a=xd,b=yd$,则$a+b|ab$等价于$x+y|xyd$。
因为$x,y$互质,所以$x+y|d$。
假设$x<y$,那么对于固定的$x,y$,有$\lfloor\frac{n}{y(x+y)}\rfloor$个$d$。
枚举$y$,设$m=\lfloor\frac{n}{y}\rfloor$,则它的贡献为:
\[\begin{eqnarray*}
&&\sum_{i=1}^{y-1}[\gcd(i,y)=1]\lfloor\frac{m}{i+y}\rfloor\\
&=&\sum_{i=1}^{y-1}\sum_{d|\gcd(i,y)}\mu(d)\lfloor\frac{m}{i+y}\rfloor\\
&=&\sum_{i=1}^{y-1}\sum_{d|i,d|y}\mu(d)\lfloor\frac{m}{i+y}\rfloor\\
&=&\sum_{d|y}\mu(d)\sum_{d|i}\lfloor\frac{m}{i+y}\rfloor
\end{eqnarray*}\]
枚举$y$的约数$d$,再分段计算$\sum_{d|i}\lfloor\frac{m}{i+y}\rfloor$即可。
时间复杂度$O(N^\frac{3}{4}\log N)$。
#include<cstdio>
typedef long long ll;
const int N=46500,M=505030;
int n,m,lim,i,j,d,l,r,vis[N],tot,p[N],mu[N],g[N],v[M],nxt[M],ed;ll ans,t;
inline void add(int x,int y){v[++ed]=y;nxt[ed]=g[x];g[x]=ed;}
int main(){
for(scanf("%d",&n);(ll)lim*(lim+1)<=n;lim++);
for(mu[1]=1,i=2;i<lim;i++){
if(!vis[i])p[tot++]=i,mu[i]=-1;
for(j=0;j<tot;j++){
if(i*p[j]>=lim)break;
vis[i*p[j]]=1;
if(i%p[j])mu[i*p[j]]=-mu[i];else break;
}
}
for(i=1;i<lim;i++)if(mu[i])for(j=i;j<lim;j+=i)add(j,i);
for(i=2;i<lim;i++)for(m=n/i,j=g[i];j;j=nxt[j]){
for(t=0,d=v[j],l=1;l<i&&i+l<=m;l=r+1){
r=m/(m/(i+l))-i;
if(r>=i)r=i-1;
t+=(ll)(r/d-(l-1)/d)*(m/(i+l));
}
ans+=t*mu[d];
}
return printf("%lld",ans),0;
}
BZOJ2671 : Calc的更多相关文章
- BZOJ2671 Calc 【莫比乌斯反演】
题目链接 BZOJ2671 题解 令\(d = (a,b)\),\(a = dx,b = dy\) 那么有 \[ \begin{aligned} d(x + y) | d^2xy \\ (x + y) ...
- BZOJ2671 Calc(莫比乌斯反演)
两个多月之前写的题,今天因为看到一道非常相似的题就翻出来了,发现完全不会,没救. 感觉这个题其实第一步是最难想到的,也是最重要的. 设d=gcd(a,b).那么a=yd,b=xd,且gcd(x,y)= ...
- 【BZOJ2671】Calc(莫比乌斯反演)
[BZOJ2671]Calc 题面 BZOJ 给出N,统计满足下面条件的数对(a,b)的个数: 1.\(1\le a\lt b\le N\) 2.\(a+b\)整除\(a*b\) 我竟然粘了题面!!! ...
- 【BZOJ2671】Calc 数学
[BZOJ2671]Calc Description 给出N,统计满足下面条件的数对(a,b)的个数: 1.1<=a<b<=N 2.a+b整除a*b Input 一行一个数N Out ...
- BZOJ2506: calc
Description 给一个长度为n的非负整数序列A1,A2,…,An.现有m个询问,每次询问给出l,r,p,k,问满足l<=i<=r且Ai mod p = k的值 ...
- css绘制特殊图形,meida查询,display inline-box间隙问题以及calc()函数
本文同时发表于本人个人网站 www.yaoxiaowen.com 距离上一篇文章已经一个月了,相比于写代码,发现写文章的确是更需要坚持的事情.言归正传,梳理一下这一个月来,在写ife任务时,有必要记录 ...
- 利用calc计算宽度
width:calc(100% - 40px)可用 + - * / 进行计算(ie9+) 注:计算符号前后必须跟上空格.
- CSS3的calc()使用
CSS3的calc()使用 calc是英文单词calculate(计算)的缩写,是css3的一个新增的功能,用来指定元素的长度.比如说,你可以使用calc()给元素的border.margin.pad ...
- 理解CSS中的数学表达式calc()
前面的话 数学表达式calc()是CSS中的函数,主要用于数学运算.使用calc()为页面元素布局提供了便利和新的思路.本文将介绍calc()的相关内容 定义 数学表达式calc()是calculat ...
随机推荐
- bzoj千题计划235:bzoj2448: 挖油
http://www.lydsy.com/JudgeOnline/problem.php?id=2448 一遍过,嘎嘎嘎嘎嘎嘎嘎嘎嘎嘎嘎嘎,O(∩_∩)O~ 题意是最小化最大值 设计区间dp dp[i ...
- iOS动画1 — UIView动画
iOS动画基础是Core Animation核心动画.Core Animation是iOS平台上负责图形渲染与动画的基础设施.由于核心动画的实现比较复杂,苹果提供了实现简单动画的接口—UIView动画 ...
- Kali社会工程学攻击--powershell 攻击(无视防火墙)
1.打开setoolkit 输入我们反弹shell的地址与端口 2.修改我的shellcode 3.攻击成功
- 统一过程模型(RUP/UP)
http://blog.sina.com.cn/s/blog_6a06f1b7010121hz.html 统一过程(RUP/UP,Rational Unified Process)是一种以用例驱动.以 ...
- Linux dd命令中dsync与fdatasync的区别【转】
在Linux系统中经常会使用dd命令来测试硬盘的写入速度,命令会涉及到两个参数:dsync与fdatasync,本文介绍一下其区别. dd if=/dev/zero of=/tmp/1Gbytes b ...
- casper Dom的操作
phantom.casperTest = true; phantom.outputEncoding="utf-8"; var casper = require('casper'). ...
- eclipse中 EAR Libraries 是什么?
eclipse中 EAR Libraries 是 开发EJB工程所需的库包. 由于新建web工程时,eclipse并不能智能化的判断是否该项目以后会用到ejb, 所以为了全面考虑 就已经帮用户导入了E ...
- mysql 当前时间
1. mysql 获取当前时间 select now() ,current_timestamp(),localtimestamp(),sysdate() ,curdate(),curtime(),u ...
- 转 Spring Boot之No session repository could be auto-configured, check your configuration问题解决
1. 环境介绍 JDK 1.8 Spring-Boot 1.5.1.RELEASE, STS IDE 2. 问题的提出 创建了一个非常简约的Spring Boot Web Application ...
- jquery模型(外壳实现)
详细解释: 1.现在传入的参数是window,document,可以知道是它俩引用 2. 3. 4.每次调用jquery方法,都会创建一个实例,但是内存并没有暴涨,原因是:jquery里面new 的这 ...