矩阵的相关性质再回顾

对于一个矩阵

  1. 满足结合律
  2. 满足乘法对于加法的分配率
  3. 但是不满足交换律!

对于特殊一点的矩阵来说:

把最左边还有最右面的看成一个数组。。

矩阵加速大法:

因为矩阵满足结合律,所以可以使用快速幂来进行计算。
规律总结:
矩阵加速设计到两个东西:

  • 状态矩阵
  • 转移矩阵
  1. 可以抽象出一个一维向量,在每一次递推就变化一次;
  2. 状态转移方程不发生变化;
  3. 状态转移过程中,一定是线性的(加减,乘以系数)
  4. 注意:状态矩阵需要尽可能短,转移次数可以比较大。

时间复杂度是

N

3

l

o

g

N

N^3logN

N3logN.

ACWing205. 斐波那契



要注意取模

代码

#include <bits/stdc++.h>
using namespace std;
const int len = 2;
const int mod = 10000;
void mulself(int a[2][2])
{
int c[2][2];
memset(c, 0, sizeof(c));
for(int i = 0; i < len; i++ )
for(int j = 0; j < len; j++)
for(int k = 0; k < len; k++)
c[i][j] = (c[i][j]+(long long)a[i][k] * a[k][j])%mod;
memcpy(a, c, sizeof(c));
}
void mul(int a[2][2], int f[2])
{
int c[2];
memset(c, 0, sizeof(c));
for(int j = 0; j < len; j++)
for(int k = 0; k < len; k++)
c[j] = (c[j] + (long long)f[k] * a[k][j])%mod;
memcpy(f, c, sizeof(c));
}
void solve(int n)
{
int a[2][2] = {{0, 1}, {1, 1}};
int f[2] = {0, 1};
for(; n; n >>= 1 )
{
if(n&1) mul(a, f);
mulself(a);
}
printf("%d\n", f[0]);
}
int main()
{
int n;
while((scanf("%d", &n)||1) && n != -1) solve(n);
return 0;
}

ACWing206. 石头游戏


解题思路:

感受:

太恶心了,一百多行代码,debug了一下午

代码


//在这个程序中所有的数组全部从1开始计数
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll n,m,t,act;
char op[20][20];//表示操作
ll oplen[20];
ll mp[70];//表示单元格映射的操作数字
ll matrix[70][70][70];
ll p;//p表示状态矩阵的从 0 到 p;
inline ll num(ll x, ll y)
{
if(x==0 && y==0) return 0;
return (x-1)*m + y;
}
void read_op_and_mp()
{
char buf[12];
for(int i = 1; i <= n; i++)
{
scanf("%s", buf+1);
for(int j = 1; j <= m; j++)
{
mp[num(i, j)] = buf[j]-'0'+1;
}
}
for(int i = 1; i <= act; i++)
{
scanf("%s", op[i]+1);
oplen[i] = strlen(op[i]+1);
}
}
void mulself(ll a[70][70])//
{
ll c[70][70];
memset(c, 0, sizeof(c));
for(int i = 0; i<= p; i++)
for(int j = 0; j <= p; j++)
for(int k = 0; k <= p; k++)
c[i][j] += a[i][k] * a[k][j];
memcpy(a, c, sizeof(c));
}
void mul(ll f[], ll a[70][70])
{
ll c[70];
memset(c, 0, sizeof(c));
for(int j = 0; j <= p; j++)
for(int k = 0; k <= p; k++)
{
c[j] += f[k] * a[k][j];
}
memcpy(f, c, sizeof(c));//sizeof不能是f因为f是指针。
}
void make_matrix()
{
ll tmp[70][70];
for(int i = 0; i <= p; i++) matrix[0][i][i] = 1;//设置为单位矩阵
for(int tt = 1; tt <= 60; tt++)
{
memset(tmp, 0, sizeof(tmp));
tmp[0][0] = 1;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
{
char ch = op[mp[num(i, j)]][(tt-1)%oplen[mp[num(i, j)]]+1];
if('0' <= ch && ch <= '9')
{
tmp[num(0, 0)][num(i, j)] = ch-'0';
tmp[num(i, j)][num(i, j)] = 1;
}
else if(ch=='N')
{
if(i > 1) tmp[num(i, j)][num(i-1, j)] = 1;
}
else if(ch=='W')
{
if(j > 1) tmp[num(i, j)][num(i, j-1)] = 1;
}
else if(ch=='S')
{
if(i < n) tmp[num(i, j)][num(i+1, j)] = 1;
}
else if(ch=='E')
{
if(j < m) tmp[num(i, j)][num(i, j+1)] = 1;
}
}
for(int i = 0; i <= p; i++)
for(int j = 0; j <= p; j++)
for(int k = 0; k <= p; k++)
{
matrix[tt][i][j] += matrix[tt-1][i][k] * tmp[k][j];
}
}
}
ll solve()
{
ll ret = 0;
ll f[70] = {0};
f[0] = 1;
ll a[70][70];
make_matrix();
memcpy(a, matrix[60], sizeof(a));
ll xx = t / 60;
for(; xx; xx >>= 1)
{
if(xx&1) mul(f, a);
mulself(a);
}
mul(f, matrix[t%60]);
for(int i = 1; i <= p; i++) ret = max(ret, f[i]);
return ret;
}
int main()
{
cin >> n >> m >> t >> act;
read_op_and_mp();
p = m * n;
ll ans = solve();
cout << ans << endl;
return 0;
}

算法竞赛进阶指南0x34矩阵乘法的更多相关文章

  1. 算法竞赛进阶指南 0x00 基本算法

    放在原来这个地方不太方便,影响阅读体验.为了读者能更好的刷题,另起一篇随笔. 0x00 基本算法 0x01 位运算 [题目][64位整数乘法] 知识点:快速幂思想的灵活运用 [题目][最短Hamilt ...

  2. 算法竞赛进阶指南--快速幂,求a^b mod p

    // 快速幂,求a^b mod p int power(int a, int b, int p) { int ans = 1; for (; b; b >>= 1) { if (b &am ...

  3. 《算法竞赛进阶指南》0x10 基本数据结构 Hash

    Hash的基本知识 字符串hash算法将字符串看成p进制数字,再将结果mod q例如:abcabcdefg 将字母转换位数字(1231234567)=(1*p9+2*p8+3*p7+1*p6+2*p5 ...

  4. 《算法竞赛进阶指南》1.4Hash

    137. 雪花雪花雪花 有N片雪花,每片雪花由六个角组成,每个角都有长度. 第i片雪花六个角的长度从某个角开始顺时针依次记为ai,1,ai,2,-,ai,6. 因为雪花的形状是封闭的环形,所以从任何一 ...

  5. bzoj 1787 && bzoj 1832: [Ahoi2008]Meet 紧急集合(倍增LCA)算法竞赛进阶指南

    题目描述 原题连接 Y岛风景美丽宜人,气候温和,物产丰富. Y岛上有N个城市(编号\(1,2,-,N\)),有\(N-1\)条城市间的道路连接着它们. 每一条道路都连接某两个城市. 幸运的是,小可可通 ...

  6. POJ1639 算法竞赛进阶指南 野餐规划

    题目描述 原题链接 一群小丑演员,以其出色的柔术表演,可以无限量的钻进同一辆汽车中,而闻名世界. 现在他们想要去公园玩耍,但是他们的经费非常紧缺. 他们将乘车前往公园,为了减少花费,他们决定选择一种合 ...

  7. 算法竞赛进阶指南0x51 线性DP

    AcWing271. 杨老师的照相排列 思路 这是一个计数的题目,如果乱考虑,肯定会毫无头绪,所以我们从1号到最后一个依次进行安排. 经过反复实验,发现两个规律 每一行的同学必须是从左向右依次连续放置 ...

  8. 算法竞赛进阶指南0x35高斯消元与线性空间

    高斯消元 目录 高斯消元 ACWing207. 球形空间产生器(点击访问) 求解思路 代码 ACWing208. 开关问题(点击访问) 思路 代码 总结 欣赏 线性空间 定义 ACWing209. 装 ...

  9. 算法竞赛进阶指南0x14 Hash

    组成部分: 哈希函数: 链表 AcWing137. 雪花雪花雪花 因为所需要数据量过于大,所以只能以O(n)的复杂度. 所以不可能在实现的过程中一一顺时针逆时针进行比较,所以采用一种合适的数据结构. ...

随机推荐

  1. iptables系列教程(一)| iptables入门篇

    一个执着于技术的公众号 前言 在早期的 Linux 系统中,默认使用的是 iptables 配置防火墙.尽管新型 的 firewalld 防火墙已经被投入使用多年,但是大量的企业在生产环境中依然出于各 ...

  2. 想学会SOLID原则,看这一篇文章就够了!

    背景 在我们日常工作中,代码写着写着就出现下列的一些臭味.但是还好我们有SOLID这把'尺子', 可以拿着它不断去衡量我们写的代码,除去代码臭味.这就是我们要学习SOLID原则的原因所在. 设计的臭味 ...

  3. 有关 ThreadLocal 的一切

    早上好,各位新老读者们,我是七淅(xī). 今天和大家分享的是面试常驻嘉宾:ThreadLocal 当初鹅厂一面就有问到它,问题的答案在下面正文的第 2 点. 1. 底层结构 ThreadLocal ...

  4. 深入HTTP请求流程

    1.HTTP协议介绍 HTTP协议(HyperText Transfer Protocol,超文本传输协议)是因特网上应用最为广泛的一种网络传输协议,它是从WEB服务器传输超文本标记语言(HTML)到 ...

  5. c# DateTime 格式化输出字符串

    DateTime 输出字符串 带 T,结尾 +08:00 $"{DateTime.Now:O}"; // 2020-12-20T16:11:18.2353338+08:00 $&q ...

  6. MyBatis 结果映射总结

    前言 结果映射指的是将数据表中的字段与实体类中的属性关联起来,这样 MyBatis 就可以根据查询到的数据来填充实体对象的属性,帮助我们完成赋值操作.其实 MyBatis 的官方文档对映射规则的讲解还 ...

  7. springSecurity + jwt + redis 前后端分离用户认证和授权

    记录一下使用springSecurity搭建用户认证和授权的代码... 技术栈使用springSecurity + redis + JWT + mybatisPlus 部分代码来自:https://b ...

  8. 测试平台系列(94) 前置条件该怎么支持Python呢

    回顾 上一节我们狠狠操练了一番oss,但我们的任务还很长久,所以我们需要继续打磨我们的功能. 那今天就让我们来思考下,如何在前置条件支持python脚本,多的不说,我们也暂时不考虑其他语言,因为光考虑 ...

  9. pycharm解释器的配置等

    转自:http://www.360doc.com/content/18/0913/14/11881101_786350505.shtml 为什么安装python后,还需要pycharm配置环境 我们实 ...

  10. 2021.03.06【NOIP提高B组】模拟 总结

    T1 看起来十分复杂,打表后发现答案是 \(n*m\mod p\) 具体的证明... 原式的物理意义,就是从坐标原点(0,0),用每一种合法的斜率, 穿过坐标[1 ~ n , 1 ~ m]的方阵中的整 ...