题目

城市中有一条长度为 \(n\) 的道路,每隔 \(1\) 的长度有一个公交车站,编号从 \(0\) 到 \(n\),学校在 \(0\) 号车站的位置。其中每个公交车站(除了 \(n\) 号车站)有两个属性 \(c_i\) 和 \(v_i\),代表从这个公交车站出发的公交车的性质。\(c_i\) 代表这个从i出发的公交车,相邻两个停靠站之间的距离。\(v_i\) 表示每坐 \(1\) 站的花费。

注意,一辆公交车出发后会向 \(n\) 号车站的方向行进。同时,一名乘客只能从起点站上车,但可以从任意停靠站下车。校庆志愿者小 \(Z\) 为了帮助校友查询有关城市交通费用的问题,想知道从 \(0\) 号车站(也就是学校)出发,到达每个公交车站的最小花费,于是他找到了你。

数据规模

对于 30% 的数据满足,\(1 \le n \le 5000\)

对于 60% 的数据满足,\(1 \le n \le 10^5\)

对于另 20% 的数据满足,\(maxc = 1\)

对于 100% 的数据满足,\(1 \le n \le 10^6,1 \le maxc \le 10,1 \le ci \le maxc,1 \le vi \le 1000\)

数据存在梯度。

分析

30% 的数据

我们试着想 \(O(n^2)\) 的 \(dp\)

有 \(f_i = \min_{1 \le j < i,c_j | (i-j)}f_j + (i-j)/c_j*v_j\)

另 20% 的数据

既然有 \(maxc = 1\) 说明所有的 \(c_j=1\)

也就是说我们从 \(0\) 点开始坐车,一遇到 \(v_i\) 更小的就可以换乘,必然更优

\(O(n)\) 扫一遍就好了

100% 的数据

考虑继续优化 \(dp\)

很明显只能上斜率优化了!

很明显用不了斜率优化!

观察 \(f_i = f_j+ (i-j)/c_j*v_j\)

若需 \(c_j|(i-j)\),那么 \(i \equiv j \pmod {c_j}\)

所以我们要维护 \(i\) 的决策集合

只要 \(c_i\) 和 \(i \bmod {c_i}\) 两样东西就可以确定了

那我们就维护 \(maxc \times maxc\) 个决策集合

选用 \(vector\) 类型就好,我选择了链式前向星

然后怎么找最优决策?

我们先从题目中找性质

两站同属一个决策集合

如过后一个站的 \(v_i\) 小于 前一个站 \(v_i\), 前一个站就没有用了

然后我们就有了 \(v_i\) 单调递增

因为同属一个集合,\(c_i=c_j\) 所以 \(v_i/c_i\) 单调递增

记 \(p_i = v_i / c_i\)

那么 \(f_i = f_j+(i-j)*p_i\)

此时考虑斜率优化

若 \(j < k\) 且 \(j\) 更优

\[\begin{aligned}
f_j+(i-j)*p_j < f_k+(i-k)*p_k \\
\frac{(f_j-j*p_j)-(f_k-k*p_k)}{p_k-p_j} < i
\end{aligned}
\]

因为 \(f_j-j*p_j\) 越来越小

所以最优决策在最后,用栈维护集合即可

\(Code\)

#include<cstdio>
#include<iostream>
using namespace std; const int N = 1e6 + 5, INF = 0x3f3f3f3f;
int n, maxc;
int f[N], c[N], v[N], t[15][15]; struct node{int to, pre;}e[N];
inline void add(int c, int y, int to)
{
static int tot = 0;
e[++tot] = node{to, t[c][y]}, t[c][y] = tot;
} inline double slope(int j, int k){return (f[j] - 1.0 * j * v[j] / c[j] - f[k] + 1.0 * k * v[k] / c[k]) / (v[k] - v[j]);} inline void read(int &x)
{
x = 0; int f = 1; char ch = getchar();
while (ch < '0' || ch > '9') f = (ch == '-' ? -1 : f), ch = getchar();
while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar();
x *= f;
}
int buf[20];
inline void write(int x)
{
if (x < 0) putchar('-'), x = -x;
for (; x; x /= 10) buf[++buf[0]] = x % 10;
if (!buf[0]) buf[++buf[0]] = 0;
for (; buf[0]; putchar('0' + buf[buf[0]--]));
} int main()
{
freopen("bus.in", "r", stdin);
freopen("bus.out", "w", stdout);
read(n), read(maxc);
for(register int i = 0; i < n; i++) read(c[i]), read(v[i]);
f[0] = 0, add(c[0], 0, 0);
for(register int i = 1; i <= n; i++)
{
f[i] = INF;
for(register int j = 1; j <= maxc; j++)
if (t[j][i % j])
{
int y = i % j;
while (e[t[j][y]].pre && slope(e[e[t[j][y]].pre].to, e[t[j][y]].to) < 1.0 * i / j) t[j][y] = e[t[j][y]].pre;
f[i] = min(f[i], f[e[t[j][y]].to] + (i - e[t[j][y]].to) * v[e[t[j][y]].to] / c[e[t[j][y]].to]);
}
if (i == n || f[i] == INF) continue;
int y = i % c[i];
while (t[c[i]][y] && v[e[t[c[i]][y]].to] >= v[i]) t[c[i]][y] = e[t[c[i]][y]].pre;
while (e[t[c[i]][y]].pre && slope(e[e[t[c[i]][y]].pre].to, e[t[c[i]][y]].to) < slope(e[t[c[i]][y]].to, i))
t[c[i]][y] = e[t[c[i]][y]].pre;
add(c[i], y, i);
}
for(register int i = 1; i <= n; i++)
if (f[i] == INF) putchar('-'), putchar('1'), putchar(' ');
else write(f[i]), putchar(' ');
}

JZOJ 5415. 【NOIP2017提高A组集训10.22】公交运输的更多相关文章

  1. [JZOJ 5437] [NOIP2017提高A组集训10.31] Sequence 解题报告 (KMP)

    题目链接: http://172.16.0.132/senior/#main/show/5437 题目: 题解: 发现满足上述性质并且仅当A序列的子序列的差分序列与B序列的差分序列相同 于是我们把A变 ...

  2. 【JZOJ5428】【NOIP2017提高A组集训10.27】查询

    题目 给出一个长度为n的序列a[] 给出q组询问,每组询问形如\(<x,y>\),求a序列的所有区间中,数字x的出现次数与数字y的出现次数相同的区间有多少个. 分析 我们可以维护一个前缀和 ...

  3. 5433. 【NOIP2017提高A组集训10.28】图

    题目描述 Description 有一个n个点A+B条边的无向连通图,有一变量x,每条边的权值都是一个关于x的简单多项式,其中有A条边的权值是k+x,另外B条边的权值是k-x,如果只保留权值形如k+x ...

  4. 【JZOJ5439】【NOIP2017提高A组集训10.31】Calculate

    题目 分析 对于\[\sum_{i=1}^{n}\lfloor\dfrac{T-B_i}{A_i}\rfloor\] 我们考虑拆开处理,得到 \[\sum_{i=1}^{n}(\lfloor\dfra ...

  5. 【JZOJ5430】【NOIP2017提高A组集训10.27】图

    题目 有一个n个点的无向图,给出m条边,每条边的信息形如\(<x,y,c,r>\) 给出q组询问形如\(<u,v,l,r>\) 接下来解释询问以及边的意义 询问表示,一开始你在 ...

  6. 5432. 【NOIP2017提高A组集训10.28】三元组

    题目 题目大意 给你\(X+Y+Z\)个三元组\((x_i,y_i,z_i)\). 然后选\(X\)个\(x_i\),选\(Y\)个\(y_i\),选\(Z\)个\(z_i\). 每个三元组只能选择其 ...

  7. 【JZOJ5434】【NOIP2017提高A组集训10.30】Matrix

    题目 分析 假设答案为ans, 发现\[k=\sum_{i=1}^{min(n,k)}\lfloor \dfrac{ans}{i} \rfloor\] 于是可以对ans进行二分, 用分块来求出上面的式 ...

  8. 【NOIP2017提高A组集训10.21】Fantasy

    题目 Y sera 陷入了沉睡,幻境中它梦到一个长度为N 的序列{Ai}. 对于这个序列的每一个子串,定义其幻境值为这个子串的和,现在Y sera 希望选择K 个不同的子串并使得这K 个子串的幻境值之 ...

  9. JZOJ 【NOIP2017提高A组模拟9.14】捕老鼠

    JZOJ [NOIP2017提高A组模拟9.14]捕老鼠 题目 Description 为了加快社会主义现代化,建设新农村,农夫约(Farmer Jo)决定给农庄里的仓库灭灭鼠.于是,猫被农夫约派去捕 ...

  10. JZOJ 【NOIP2016提高A组集训第16场11.15】SJR的直线

    JZOJ [NOIP2016提高A组集训第16场11.15]SJR的直线 题目 Description Input Output Sample Input 6 0 1 0 -5 3 0 -5 -2 2 ...

随机推荐

  1. python 爬取豆瓣电影评论,并进行词云展示

    python 爬取豆瓣电影评论,并进行词云展示 本文旨在提供爬取豆瓣电影<我不是药神>评论和词云展示的代码样例 1.分析URL 2.爬取前10页评论 3.进行词云展示 1.分析URL 我不 ...

  2. 所元素设为border-box

    /*全局设为CSS3盒模型 border-box*/ html { box-sizing: border-box; } *, *:before, *:after { box-sizing: inher ...

  3. 学习Django框架之前所需要了解的知识点

    目录 一: Web应用 1.Web应用程序什么? 2.软件开发架构 3.Web应用程序的优点 4.Web应用程序的缺点 5.B/S架构优点 6.Web框架本质 二:MVC和MTV模式 1.MVC设计模 ...

  4. [python] ​Python数据序列化模块pickle使用笔记

    pickle是一个Python的内置模块,用于在Python中实现对象结构序列化和反序列化.Python序列化是一个将Python对象层次结构转换为可以本地存储或者网络传输的字节流的过程,反序列化则是 ...

  5. 基于Chromium开发的称重软件,集称重、计价、打印于一体,支持耀华、顶尖等多个厂家设备型号

    技术方案: 1.运行时使用.Net Framework4.6框架,界面使用WPF与Chromium. 2.上位机与下位机使用串口对接每家设备协议,上位机与UI使用WebSocket通讯. 3.数据库使 ...

  6. 使用Python库pyqt5制作TXT阅读器(一)-------UI设计

    项目地址:https://github.com/pikeduo/TXTReader PyQt5中文手册:https://maicss.gitbook.io/pyqt-chinese-tutoral/p ...

  7. python之路43 JavaScript语法BOM与DOM jQuery对比 标签绑定事件

    前戏 到目前为止,我们已经学过了JavaScript的一些简单的语法.但是这些简单的语法,并没有和浏览器有任何交互. 也就是我们还不能制作一些我们经常看到的网页的一些交互,我们需要继续学习BOM和DO ...

  8. 第k个数【模板题】

    第k个数 给定一个长度为 \(n\) 的整数数列,以及一个整数 \(k\),请用快速选择算法求出数列从小到大排序后的第 \(k\) 个数. 输入格式 第一行包含两个整数 \(n\) 和 \(k\). ...

  9. 树形 dp 与树上问题

    NFLS 集训笔记 20220802 - 树形 dp 进阶与树上问题综合 \(\text{By DaiRuiChen007}\) I. 洛谷[P2585] - 三色二叉树 \(\text{Link}\ ...

  10. Linux c 检测当前网卡是否已经启动

    思路: 1.socket 建立一个数据报套接字. 2.定义一个struct ifreq ifr 结构体.将网络名称如"eth0" 赋值给ifr结构体的ifr.ifr_name. 3 ...