4034: [HAOI2015]T2

Description

有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个

操作,分为三种:
操作 1 :把某个节点 x 的点权增加 a 。
操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。
操作 3 :询问某个节点 x 到根的路径中所有点的点权和。

Input

第一行包含两个整数 N, M 。表示点数和操作数。

接下来一行 N 个整数,表示树中节点的初始权值。

接下来 N-1 行每行三个正整数 fr, to , 表示该树中存在一条边 (fr, to) 。
再接下来 M 行,每行分别表示一次操作。其中第一个数表示该操
作的种类( 1-3 ) ,之后接这个操作的参数( x 或者 x a ) 。

Output

对于每个询问操作,输出该询问的答案。答案之间用换行隔开。

Sample Input

5 5
1 2 3 4 5
1 2
1 4
2 3
2 5
3 3
1 2 1
3 5
2 1 2
3 3

Sample Output

6
9
13

HINT

对于 100% 的数据, N,M<=100000 ,且所有输入数据的绝对值都不

会超过 10^6 。

Source

鸣谢bhiaibogf提供

题解:

树链剖分模板题。

刚学树剖,贴个模板吧。。

#include<stdio.h>
#include<iostream>
using namespace std;
const int N=30005;
#define p1 (p<<1)
#define p2 (p<<1|1)
char c[5];
int Q,n,i,x,y,k,id[N],fa[N],top[N],dep[N],s[N],t[N<<2],T[N<<2];
int tot,head[N],to[N<<1],Next[N<<1];
inline void read(int &v){
char ch,fu=0;
for(ch='*'; (ch<'0'||ch>'9')&&ch!='-'; ch=getchar());
if(ch=='-') fu=1, ch=getchar();
for(v=0; ch>='0'&&ch<='9'; ch=getchar()) v=v*10+ch-'0';
if(fu) v=-v;
}
void add(int x,int y)
{
to[tot]=y;
Next[tot]=head[x];
head[x]=tot++;
}
inline void dfs(int x,int pre)
{
s[x]=1;
for(int i=head[x];i!=-1;i=Next[i])
if(to[i]!=pre)
{
dep[to[i]]=dep[x]+1;
fa[to[i]]=x;
dfs(to[i],x);
s[x]+=s[to[i]];
}
}
inline void Dfs(int x,int v)
{
id[x]=++k;
top[x]=v;
int son=0,i;
for(i=head[x];i!=-1;i=Next[i])
if(dep[to[i]]>dep[x]&&s[to[i]]>s[son]) son=to[i];
if(!son) return;
Dfs(son,v);
for(i=head[x];i!=-1;i=Next[i])
if(dep[to[i]]>dep[x]&&to[i]!=son) Dfs(to[i],to[i]);
}
void update(int l,int r,int x,int y,int p)
{
if(l==r)
{
t[p]=T[p]=y;
return;
}
int mid=(l+r)>>1;
if(x<=mid) update(l,mid,x,y,p1);else update(mid+1,r,x,y,p2);
t[p]=max(t[p1],t[p2]);
T[p]=T[p1]+T[p2];
}
int Max(int l,int r,int x,int y,int p)
{
if(x<=l&&r<=y) return t[p];
int mid=(l+r)>>1,ans=-1e9;
if(x<=mid) ans=Max(l,mid,x,y,p1);
if(y>mid) ans=max(ans,Max(mid+1,r,x,y,p2));
return ans;
}
int Sum(int l,int r,int x,int y,int p)
{
if(x<=l&&r<=y) return T[p];
int mid=(l+r)>>1,ans=0;
if(x<=mid) ans=Sum(l,mid,x,y,p1);
if(y>mid) ans+=Sum(mid+1,r,x,y,p2);
return ans;
}
int solvemax(int x,int y)
{
int ans=-1e9;
while(top[x]!=top[y])
{
if(dep[top[x]]<dep[top[y]]) swap(x,y);
ans=max(ans,Max(1,n,id[top[x]],id[x],1));
x=fa[top[x]];
}
if(id[x]>id[y]) swap(x,y);
ans=max(ans,Max(1,n,id[x],id[y],1));
return ans;
}
int solvesum(int x,int y)
{
int ans=0;
while(top[x]!=top[y])
{
if(dep[top[x]]<dep[top[y]]) swap(x,y);
ans+=Sum(1,n,id[top[x]],id[x],1);
x=fa[top[x]];
}
if(id[x]>id[y]) swap(x,y);
ans+=Sum(1,n,id[x],id[y],1);
return ans;
}
int main()
{
read(n);
for(i=1;i<=n;i++) head[i]=-1;
for(i=1;i<=n<<2;i++) t[i]=-1e9;
for(i=1;i<n;i++)
{
read(x),read(y);
add(x,y);
add(y,x);
}
dfs(1,0);
Dfs(1,1);
for(i=1;i<=n;i++)
{
read(x);
update(1,n,id[i],x,1);
}
read(Q);
while(Q--)
{
scanf("%s",c);read(x),read(y);
if(c[1]=='M') printf("%d\n",solvemax(x,y));else
if(c[1]=='S') printf("%d\n",solvesum(x,y));else
update(1,n,id[x],y,1);
}
return 0;
}

  

bzoj 4034: [HAOI2015]T2的更多相关文章

  1. bzoj 4034 [HAOI2015] T2(树链剖分,线段树)

    4034: [HAOI2015]T2 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1536  Solved: 508[Submit][Status] ...

  2. Bzoj 4034: [HAOI2015]T2 树链剖分,子树问题,dfs序

    4034: [HAOI2015]T2 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1841  Solved: 598[Submit][Status] ...

  3. BZOJ 4034: [HAOI2015]T2( 树链剖分 )

    树链剖分...子树的树链剖分序必定是一段区间 , 先记录一下就好了 ------------------------------------------------------------------ ...

  4. 数据结构(树链剖分):BZOJ 4034: [HAOI2015]T2

    Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中 ...

  5. BZOJ 4034 [HAOI2015]T2(树链剖分)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4034 [题目大意] 有一棵点数为 N 的树,以点 1 为根,且树点有边权. 有 M 个 ...

  6. BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 )

    BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 ) 题意分析 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 ...

  7. bzoj 4034: [HAOI2015]树上操作 树链剖分+线段树

    4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4352  Solved: 1387[Submit][Stat ...

  8. bzoj 4034: [HAOI2015]树上操作 (树剖+线段树 子树操作)

    4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 6779  Solved: 2275[Submit][Stat ...

  9. [BZOJ]4034: [HAOI2015]树上操作

    [HAOI2015]树上操作 传送门 题目大意:三个操作 1:a,b,c b节点权值+c 2:a,b,c 以b为根的子树节点权值全部+c 3:a,b 查询b到根路径的权值和. 题解:树链剖分 操作1 ...

随机推荐

  1. 用java代码调用shell脚本执行sqoop将hive表中数据导出到mysql

    1:创建shell脚本 touch sqoop_options.sh chmod 777 sqoop_options.sh 编辑文件  特地将执行map的个数设置为变量  测试 可以java代码传参数 ...

  2. python之yagmail库笔记

    1. yagmail是啥 yagmail是给正常人用的,封装的比较彻底的一个python邮件库,发送接收邮件只需要几行代码,炒鸡简单. 2. 安装 使用pip安装,炒鸡简单: pip install ...

  3. Python设计模式中单例模式的实现及在Tornado中的应用

    单例模式的实现方式 将类实例绑定到类变量上 class Singleton(object): _instance = None def new(cls, *args): if not isinstan ...

  4. 34.Find First and Last Position of Element in Sorted Array---头条面试题、《剑指offer》38

    题目链接 题目大意:找出一串升序数组中target值的起始下标和结束下标值,如果不存在则返回{-1,-1}. 解法一:用二分查找,找到数组中的target,然后找其左边和右边的target下标值.代码 ...

  5. python redis-string、list、set操作

    string操作 redis中的string在内存中都是按照一个key对应一个value来存储的 方法: set() 方法 : 写入一条数据 mset() 方法: 写入多条数据 , 可是Key-Val ...

  6. [ python ] 线程的操作

    目录 (见右侧目录栏导航) - 1. 前言    - 1.1 进程    - 1.2 有了进程为什么要有线程    - 1.3 线程的出现    - 1.4 进程和线程的关系    - 1.5 线程的 ...

  7. Linux命令参数处理 shell脚本函数getopts

    getopts 命令 用途 处理命令行参数,并校验有效选项. 语法 getopts 选项字符串 名称 [ 参数 ...] 描述 getopts 的设计目标是在循环中运行,每次执行循环,getopts ...

  8. Kail Linux渗透测试之测试工具Armitage

    Kali Linux下的Armitage是一个很强大的渗透工具,图形化操作页面,但我们把kali linux装在虚拟机里面,然后再启动armitage就会出现一个error,他会给你一个message ...

  9. [Vuejs+php] MySQL数据转JSON传值到前端

    说在前面 JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式. 优点如下[转]: 1.占带宽小(格式是压缩的) 2. js通过eval()进行Json读取(便 ...

  10. linq to sql: 在Entityfamework Core中使用多个DbContext

    最近在学习DotNetCore并做一个自己的小项目,分为了多个数据库,AccountDbContext和BlogDbContext, 发blog的时候需要用到Account的信息,但是再Blog中只记 ...