一、概念

  假设P的内部有I(P)个格点,边界上有B(P)个格点,则P的面积A(P)为:A(P)=I(P)+B(P)/2-1。

二、说明

  Pick定理主要是计算格点多边形(定点全是格点的不自交图形)P的面积与其边界和内部格点数之间的关系。

  格点多边形的面积A(P)可以通过叉积计算出来,不过叉积计算出来的面积是实际面积的2倍;

  边界上的格点B(P)可以通过计算相邻两点的横坐标之差与纵坐标之差的最大公约数的和得到;

  内部的格点I(P)则通过公式得:I(P) = A(P)-B(P)/2+1计算出。

  解释:

   a.关于边界格点计算两点横纵坐标之差就是以两个点构成的边做坐标轴,组成的三角形(或者线)的两个之角标求gcd

   b.格点多边形的面积是通过将多边形固定一个点,然后在遍历每两个点,三个点构成的三角形求面积。由于叉积可以为负,所以不必担心多加的三角形或者不在多边形内部的三角形,都会减去。

三、代码

#include <stdio.h>
#include <math.h>
#include<stdlib.h>
struct node
{
int x,y;
} point[]; int gcd(int a,int b)//gcd
{
if(b==)
return a;
return
gcd(b,a%b);
} int Area(node a,node b)//叉积
{
return a.x*b.y-a.y*b.x;
} int main()
{
int T,case1=;
scanf("%d",&T);
int n;
while(T--)
{
int a=,p=,dx,dy,i;
scanf("%d",&n);
point[].x=;
point[].y=;
for(i=; i<=n; i++)
{
scanf("%d%d",&point[i].x,&point[i].y); /*求每条边上的点*/
dx=abs(point[i].x);
dy=abs(point[i].y);
p+=gcd(dx,dy); /*用叉积求面积*/
point[i].x+=point[i-].x;
point[i].y+=point[i-].y;
a+=Area(point[i],point[i-]); }
/*最后面积要取正值*/
a=abs(a); printf("Scenario #%d:\n",case1++);
printf("%d %d %.1f\n\n",(a-p+)/,p,0.5*a);
}
return ;
}

几何:pick定理详解的更多相关文章

  1. pick定理详解

    一.概念 假设P的内部有I(P)个格点,边界上有B(P)个格点,则P的面积A(P)为:A(P)=I(P)+B(P)/2-1. 二.说明 Pick定理主要是计算格点多边形(定点全是格点的不自交图形)P的 ...

  2. Lucas定理详解

    这篇博客是从另一位园友那里存的,但是当时忘了写原文的地址,如果有找到原文地址的请评论联系! Lucas定理解决的问题是组合数取模.数学上来说,就是求 \(\binom n m\mod p\).(p为素 ...

  3. 高斯消元法(Gauss Elimination)【超详解&模板】

    高斯消元法,是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵.高斯消元法的原理是:若用初等行变换将增广矩阵 化为 ,则AX = B与CX = D是同解方程组. ...

  4. 《Unity3D 实战核心技术详解》书中关于矩阵的错误

    最近一直在学习实时渲染,不免要接触线性代数.而渲染中,一定会用到矩阵,当我再次去复习我之前看的书时,发现<Unity3D 实战核心技术详解>关于矩阵就有几处错误 ,特标注出来. 书的第一章 ...

  5. POJ 1659 Frogs' Neighborhood(可图性判定—Havel-Hakimi定理)【超详解】

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 9897   Accepted: 41 ...

  6. (转载)--SG函数和SG定理【详解】

    在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念:        P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败.        N点:必胜点 ...

  7. 机器学习经典算法详解及Python实现--基于SMO的SVM分类器

    原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector  ...

  8. redis配置详解

    ##redis配置详解 # Redis configuration file example. # # Note that in order to read the configuration fil ...

  9. Redis 配置文件 redis.conf 项目详解

    Redis.conf 配置文件详解 # [Redis](http://yijiebuyi.com/category/redis.html) 配置文件 # 当配置中需要配置内存大小时,可以使用 1k, ...

随机推荐

  1. 不修改代码优化 ASP.NET 网站性能的一些方法

    本文将介绍一些方法用于优化ASP.NET网站性能,这些方法都是不需要修改程序代码的.它们主要分为二个方面:1. 利用ASP.NET自身的扩展性进行优化.2. 优化IIS设置. 配置OutputCach ...

  2. 【SRM20】数学场

    第一题 n个m位二进制,求异或值域总和. [题解]异或值域--->使用线性基,解决去重问题. m位二进制--->拆位,每位根据01数量可以用组合数快速统计总和. #include<c ...

  3. HDU 2516 取石子游戏 (找规律)

    题目链接 Problem Description 1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍.取完者胜.先取者负输出" ...

  4. 配置node,sass,淘宝镜像环境

    由于最近由于刚到手一台新的thinkpad(哈哈,宝宝是个小穷B,木有小苹果),所以工作开发中所用到的环境就需要重新安装一下啦,这里的话,我就把我目前所用到的进行总结一下,其余的会在以后的开发过程中, ...

  5. koa源码阅读[0]

    koa源码阅读[0] Node.js也是写了两三年的时间了,刚开始学习Node的时候,hello world就是创建一个HttpServer,后来在工作中也是经历过Express.Koa1.x.Koa ...

  6. MySQL创建相同表和数据命令

    创建和表departments结构和数据一样的表departments_t mysql> create table departments_t like departments; Query O ...

  7. 多个id或class属性相同的元素绑定事件

    <td class="tools"><a href="javascript:void(0);" status="0" na ...

  8. sql server 2008 r2 产品密钥

    数据中心版:PTTFM-X467G-P7RH2-3Q6CG-4DMYBDDT3B-8W62X-P9JD6-8MX7M-HWK38==================================== ...

  9. centos7-sar工具的安装过程及其简单应用

    一.sar工具安装 1.进入yum配置文件目录: cd /etc/yum.repos.d/ 2.vi CentOS-Base.repo命令创建文件CentOS-Base.repo 文件内容见网页:ht ...

  10. python模块之itertools

    在循环对象和函数对象中,我们了解了循环器(iterator)的功能.循环器是对象的容器,包含有多个对象.通过调用循环器的next()方法 (__next__()方法,在Python 3.x中),循环器 ...