题面

权限题

题解

这题有一个很好的性质,就是一定有$k>\frac n2$。接着考虑怎么做。

我们随机选取一个数$x$,然后将所有数与它作差,那么只需要找出$k$个差值使得他们的最大公因数大于$1$即可。我们可以将所有差值分解质因数,然后统计每个质因数出现的次数,再加上与$x$相等的数的个数就是$k$。统计$k$个时候顺便记录一下这些数的最大公因数即可。

根据之前说的那个性质,我们随机出真答案的期望是$log$的。但是随机化这个东西...是靠脸的,我最开始用了那个$8$位质数做种子,然后调了$10$次,最后调了半天改成不用种子,随机$4$次。

#include <cstdio>
#include <cstring>
#include <algorithm>
using std::min; using std::max;
using std::swap; using std::sort;
using std::__gcd;
typedef long long ll; template<typename T>
void read(T &x) {
int flag = 1; x = 0; char ch = getchar();
while(ch < '0' || ch > '9') { if(ch == '-') flag = -flag; ch = getchar(); }
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= flag;
} const int N = 1e5 + 10, M = 1e7 + 10, _ = 1e6 + 10;
int n, x, nk, nm, k, m, tot;
int prime[_], save[M], s[_], g[_], v[N], c[N];
bool notprime[M]; int main () {
for(int i = 2; i <= 10000000; ++i) {
if(!notprime[i]) prime[++tot] = i, save[i] = tot;
for(int j = 1; j <= tot && i * prime[j] <= 10000000; ++j) {
notprime[i * prime[j]] = 1, save[i * prime[j]] = j;
if(!(i % prime[j])) break;
}
} read(n);
for(int i = 1; i <= n; ++i) read(v[i]);
for(int T = 1; T <= 4; ++T) {
x = v[rand() % n + 1], nk = s[0] = 0;
for(int i = 1; i <= n; ++i) {
c[i] = abs(v[i] - x);
if(!c[i]) ++s[0];
}
for(int i = 1; i <= n; ++i) {
int t = c[i];
while(t && t != 1) {
int tmp = save[t];
++s[tmp], g[tmp] = __gcd(g[tmp], c[i]);
if(nk < s[tmp] + s[0]) nk = s[tmp] + s[0], nm = 0;
if(nk == s[tmp] + s[0]) nm = max(nm, g[tmp]);
while(!(t % prime[tmp])) t /= prime[tmp];
}
} if(nk > k) k = nk, m = 0;
if(nk == k) m = max(m, nm);
for(int i = 1; i <= n; ++i) {
int t = c[i];
while(t && t != 1) {
int tmp = save[t];
s[tmp] = g[tmp] = 0;
while(!(t % prime[tmp])) t /= prime[tmp];
}
}
}printf("%d %d\n", k, m);
return 0;
}

Bzoj3837 [Pa2013]Filary(随机化)的更多相关文章

  1. BZOJ3837 : [Pa2013]Filary

    当m取2时,k至少为$\frac{n}{2}$ 所以在最优解中每个数被选中的概率至少为$\frac{1}{2}$ 每次随机选取一个位置i,计算出其它数与$a_i$的差值,将差值分解质因数 所有质因数中 ...

  2. 【BZOJ3837】[Pa2013]Filary 随机化神题

    [BZOJ3837][Pa2013]Filary Description 给定n个正整数,从中挑出k个数,满足:存在某一个m(m>=2),使得这k个数模m的余数相等. 求出k的最大值,并求出此时 ...

  3. 【BZOJ3837】[PA2013]Filary

    [BZOJ3837][PA2013]Filary 题面 darkbzoj 题解 考虑到模数为\(2\)时答案至少为\(\frac n2\),这是我们答案的下界. 那么我们对于任意的一个数,它们答案集合 ...

  4. bzoj 3837 pa2013 Filary

    bzoj 先搞第一问.考虑简单情况,如果\(m=2\),那么一定有个剩余类大小\(\ge \lceil\frac{n}{2}\rceil\),同时这也是答案下界 然后我们每次随机选出一个数\(a_i\ ...

  5. bzoj 3837 (随机过题法了解一下)

    3837: [Pa2013]Filary Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 395  Solved: 74[Submit][Status] ...

  6. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  7. APP漏洞扫描用地址空间随机化

    APP漏洞扫描用地址空间随机化 前言 我们在前文<APP漏洞扫描器之本地拒绝服务检测详解>了解到阿里聚安全漏洞扫描器有一项静态分析加动态模糊测试的方法来检测的功能,并详细的介绍了它在针对本 ...

  8. rabin 素性检验 随机化算法

    #include <cstdio> #include <cstdlib> #include <ctime> typedef long long int LL; in ...

  9. [USACO2005][POJ2454]Jersey Politics(随机化)

    题目:http://poj.org/problem?id=2454 题意:给你3*k(k<=60)个数,你要将它们分成3个长度为k的序列,使得其中至少有两个序列的和大于k*500 分析:以为有高 ...

随机推荐

  1. struts2之OGNL用法

    浅析OGNL OGNL是Object-GraphNavigation Language的缩写,是一种功能强大的表达式语言 通过它简单一致的表达式语法,可以存取对象的任意属性,调用对象的方法,遍历整个对 ...

  2. HDFS不存在绝对路径,无法找到文件所在具体位置

    This is set in the dfs.datanode.data.dir property, which defaults to file://${hadoop.tmp.dir}/dfs/da ...

  3. Item 1----------考虑用静态工厂方法代替构造器

    读书,有时候,我感觉总是有点绕和不具体.我阅读了代码,理解代码后,才有一种理解和把握的感觉. 优点三.   把某个对象的构建放给客户端来实现. 比如下面的实现,客户端Test,获取Service的实例 ...

  4. [uva11174]村民排队 递推+组合数+线性求逆元

    n(n<=40000)个村民排成一列,每个人不能排在自己父亲的前面,有些人的父亲不一定在.问有多少种方案. 父子关系组成一个森林,加一个虚拟根rt,转化成一棵树. 假设f[i]表示以i为根的子树 ...

  5. noip2012~2015刷题小记录

    2012d1t1 密码 模拟题 #include<cstdio> #include<cstdlib> #include<cstring> #include<c ...

  6. 【BZOJ3191】【JLOI2013】卡牌游戏 [DP]

    卡牌游戏 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description   N个人坐成一圈玩游戏.一开始我 ...

  7. 【POJ】2892 Tunnel Warfare

    [算法]平衡树(treap) [题解]treap知识见数据结构 在POJ把语言从G++换成C++就过了……??? #include<cstdio> #include<algorith ...

  8. 【洛谷 P1707】 刷题比赛 (矩阵加速)

    题目连接 很久没写矩阵加速了,复习一下,没想到是一道小毒瘤题. 状态矩阵\(a[k],b[k],c[k],a[k+1],b[k+1],c[k+1],k,k^2,w^k,z^k,1\) 转移矩阵 0, ...

  9. NodeJS中Buffer模块详解

    一,开篇分析 所谓缓冲区Buffer,就是 "临时存贮区" 的意思,是暂时存放输入输出数据的一段内存. JS语言自身只有字符串数据类型,没有二进制数据类型,因此NodeJS提供了一 ...

  10. Linux内核堆栈使用方法 进程0和进程1【转】

    转自:http://blog.csdn.net/yihaolovem/article/details/37119971 目录(?)[-] 8 Linux 系统中堆栈的使用方法 81  初始化阶段 82 ...