TensorFlow 中的 tf.train.exponential_decay() 指数衰减法
exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False, name=None)
使用方式为
tf.train.exponential_decay( )
在 Tensorflow 中,exponential_decay()是应用于学习率的指数衰减函数(实现指数衰减学习率)。
在训练模型时,通常建议随着训练的进行逐步降低学习率。该函数需要`global_step`值来计算衰减的学习速率。
该函数返回衰减后的学习率。该函数的计算方程式如下

参数:
- learning_rate - 初始学习率
- global_step - 用于衰减计算的全局步骤。 一定不为负数。喂入一次 BACTH_SIZE 计为一次 global_step
- decay_steps - 衰减速度,一定不能为负数,每间隔decay_steps次更新一次learning_rate值
- decay_rate - 衰减系数,衰减速率,其具体意义参看函数计算方程(对应α^t中的α)。
- staircase - 若 ‘ True ’ ,则学习率衰减呈 ‘ 离散间隔 ’ (discrete intervals),具体地讲,`global_step / decay_steps`是整数除法,衰减学习率( the decayed learning rate )遵循阶梯函数;若为 ’ False ‘ ,则更新学习率的值是一个连续的过程,每步都会更新学习率。
返回值:
- 与初始学习率 ‘ learning_rate ’ 相同的标量 ’ Tensor ‘ 。
优点:
- 训练伊始可以使用较大学习率,以快速得到比较优的解。
- 后期通过逐步衰减后的学习率进行迭代训练,以使模型在训练后期更加稳定。
示例:
import tensorflow as tf
import matplotlib.pyplot as plt
learning_rate = 0.1
decay_rate = 0.96
global_steps = 1000
decay_steps = 100
global_step = tf.Variable(0, trainable = Fasle)
c = tf.train.exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=True)
d = tf.train.exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False)
T_C = []
F_D = []
with tf.Session() as sess:
for i in range(global_steps):
T_c = sess.run(c, feed_dict={global_step: i})
T_C.append(T_c)
F_d = sess.run(d, feed_dict={global_step: i})
F_D.append(F_d)
plt.figure(1)
plt.plot(range(global_steps), F_D, 'r-')
plt.plot(range(global_steps), T_C, 'b-')
plt.show()
运行

备注:
(1)
台阶形状的蓝色线是 staircase = True
线条形状的红色线是 staircase = Fasle
(2)
初始学习率 learning_rate 为0.1,总训练次数 global_setps 为 1000 次;staircase=True时,每隔 decay_steps = 100 次更新一次 学习率 learning_rate,而staircase=True时,每一步均会更新一次学习率 learning_rate ,
(3)
训练过程中,decay_rate的数值保持步不变。
TensorFlow 中的 tf.train.exponential_decay() 指数衰减法的更多相关文章
- tensorflow之tf.train.exponential_decay()指数衰减法
exponential_decay(learning_rate, global_steps, decay_steps, decay_rate, staircase=False, name=None) ...
- Tensorflow中的tf.argmax()函数
转载请注明出处:http://www.cnblogs.com/willnote/p/6758953.html 官方API定义 tf.argmax(input, axis=None, name=None ...
- tensorflow中使用tf.variable_scope和tf.get_variable的ValueError
ValueError: Variable conv1/weights1 already exists, disallowed. Did you mean to set reuse=True in Va ...
- [转载]tensorflow中使用tf.ConfigProto()配置Session运行参数&&GPU设备指定
tf.ConfigProto()函数用在创建session的时候,用来对session进行参数配置: config = tf.ConfigProto(allow_soft_placement=True ...
- tensorflow中共享变量 tf.get_variable 和命名空间 tf.variable_scope
tensorflow中有很多需要变量共享的场合,比如在多个GPU上训练网络时网络参数和训练数据就需要共享. tf通过 tf.get_variable() 可以建立或者获取一个共享的变量. tf.get ...
- tensorflow中使用tf.ConfigProto()配置Session运行参数&&GPU设备指定
tf.ConfigProto()函数用在创建session的时候,用来对session进行参数配置: config = tf.ConfigProto(allow_soft_placement=True ...
- tf.Session()函数的参数应用(tensorflow中使用tf.ConfigProto()配置Session运行参数&&GPU设备指定)
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/dcrmg/article/details ...
- tensorflow中的tf.app.run()的使用
指明函数的入口,即从哪里执行函数. 如果你的代码中的入口函数不叫main(),而是一个其他名字的函数,如test(),则你应该这样写入口tf.app.run(test()) 如果你的代码中的入口函数叫 ...
- tensorflow中协调器 tf.train.Coordinator 和入队线程启动器 tf.train.start_queue_runners
TensorFlow的Session对象是支持多线程的,可以在同一个会话(Session)中创建多个线程,并行执行.在Session中的所有线程都必须能被同步终止,异常必须能被正确捕获并报告,会话终止 ...
随机推荐
- [Docker] Hooking a Volume to Node.js Source Code
Normally when you create a Volume, it will store in Docket Host, you can also tell the folder which ...
- C++ 纯虚方法
1.纯虚方法解决什么样的问题,为什么要设计出纯虚方法? 考虑下面的需求,基类声明了一个方法,这个方法只针对具体的子类才有意义,比如Animal的Eat()方法,调用Animal的Eat方法是没有意义的 ...
- 【转】Spring MVC处理静态资源
优雅REST风格的资源URL不希望带 .html 或 .do 等后缀.由于早期的Spring MVC不能很好地处理静态资源,所以在web.xml中配置DispatcherServlet的请求映射,往往 ...
- Oracle Data Integrator 12c-----场景(Scenario)和调度(Schedule)
1 生成场景 Designer->项目->ODI_Exercise ->第一个文件夹->包->First _Pkg,右键,"生成场景" " ...
- 〖Android〗快速部署SSHD和Bash Shell(程序:DroidSSHD和BetterTerminalEmulatorPro)
--此文仅做个人配置记录-- 因为我经常需要sshd来连接设备,它抓取logcat日志太方便了,方便排查问题,及多人共享: 及有USB孔限制的人来说,这个更具有意义: 把超级终端增强包部署到内网,也是 ...
- Dlib机器学习指南图翻译
原图地址 http://dlib.net/ml_guide.svg 翻译的文件 http://files.cnblogs.com/files/oloroso/ml_guide.zip
- 917:Knight Moves
题目链接:http://noi.openjudge.cn/ch0205/917/ 原题应该是hdu 1372 总时间限制: 1000ms 内存限制: 65536kB 描述 BackgroundMr ...
- RHEL7禁用网卡命名规则
[root@rhel7 ~]# vi /etc/sysconfig/grub GRUB_TIMEOUT= GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g ...
- 信息列表中的ContentObserver、CONTENT_URI等
1. 注册ContentObserver时Sms.Inbox.CONTENT_URI应改成Sms.CONTENT_URI. getContentResolver().registerContentOb ...
- 导入数据库备份报错1067 – Invalid default value for ‘create_time’
通过navicat工具导入psc数据库备份文件,报错如下,mysql版本5.7 执行如下语句不通过 DROP TABLE IF EXISTS `guard_user`; CREATE TABLE `g ...