传送门:1400 序列分解序列分解

基准时间限制:1s  空间限制:131072 KBKB131072 KB 1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题

 

小刀和大刀是双胞胎兄弟。今天他们玩一个有意思的游戏。 大刀给小刀准备了一个长度为 $n$ 的整数序列。小刀试着把这个序列分解成两个长度为 $n/2$ 的子序列。

这两个子序列必须满足以下两个条件:

1.他们不能相互重叠。

2.他们要完全一样。

如果小刀可以分解成功,大刀会给小刀一些糖果。

然而这个问题对于小刀来说太难了。他想请你来帮忙。

Input
第一行给出一个T,表示T组数据。(1<=T<=5)
接下来每一组数据,输入共2行。
第一行包含一个整数n (2<=n<=40且为偶数)。
第二行给出n个整数a[0],a[1],a[2],…,a[n-1]表示大刀给小刀准备的序列。(-1,000,000,000<=a[i]<=1,000,000,000)第一行给出一个T,表示T组数据。(1<=T<=5)
接下来每一组数据,输入共2行。
第一行包含一个整数n (2<=n<=40且为偶数)。
第二行给出n个整数a[0],a[1],a[2],…,a[n-1]表示大刀给小刀准备的序列。(-1,000,000,000<=a[i]<=1,000,000,000)
Output
如果小刀可以完成游戏,输出"Good job!!" (不包含引号),否则 输出"What a pity!" (不包含引号)。如果小刀可以完成游戏,输出"Good job!!" (不包含引号),否则 输出"What a pity!" (不包含引号)。
Input示例
2
4
1 1 2 2
6
1 2 3 4 5 62
4
1 1 2 2
6
1 2 3 4 5 6
Output示例
Good job!!
What a pity!Good job!!
What a pity! 分析:
暴力。DFS 递归地扩展出一棵解答树。节点(DFS)参数为 $(i, j, k)$ ,表示当前两子序列待确定 (active) 列中可
用(active) 的位置是 $k$ 。(其实 $k$ 是可有可无的参数,因为 $k = i+j-1$ ,但添上也无妨)代码中加上了一些剪枝。
不失一般性,可认为原序列的首元素属于第一个子序列,因此初始调用参数可设为 $( 2, 1, 2)$ 。 P.S. 考虑这个问题时,没想出非暴力的解法,只是看出:
如果原序列可分成两个相等的子列,那么原序列的首、尾一定也是子列的首、尾
若有更好的解法,望在评论里告知。
 #include<bits/stdc++.h>
using namespace std;
int a[], N, x[], y[];
bool dfs(int i, int j, int k){
bool res;
if(k>N) return true;
if(i>N>>){
return a[k]==x[j]?y[j]=a[k], dfs(i, j+, k+):false;
}
if(j>N>>){
return a[k]==y[i]?x[i]=a[k], dfs(i+, j, k+):false;
}
if(i==j){
x[i]=a[k];
if(dfs(i+, j, k+)) return true;
y[j]=a[k];
return dfs(i, j+, k+);
}
if(i>j){
res = x[j]==a[k]?y[j]=a[k],dfs(i, j+, k+):false;
if(res) return res;
return x[i]=a[k],dfs(i+, j, k+);
}
if(j>i){
res = y[i]==a[k]?x[i]=a[k],dfs(i+, j, k+):false;
if(res) return res;
return y[j]=a[k],dfs(i, j+, k+);
}
}
int main(){
//freopen("in", "r", stdin);
int T;
scanf("%d", &T);
while(T--){
scanf("%d", &N);
int res=;
for(int i=; i<=N; i++) scanf("%d", a+i), res^=a[i];
if(res){
puts("What a pity!");
continue;
}
x[]=a[];
puts(dfs(, , )?"Good job!!":"What a pity!");
}
return ;
}

51NOD 1400 序列分解的更多相关文章

  1. 1400 序列分解(dfs)

    1400 序列分解 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 小刀和大刀是双胞胎兄弟.今天他们玩一个有意思的游戏. 大刀给小刀准备了一个长度为n的整数序列.小 ...

  2. 51nod 算法马拉松3 A:序列分解

    序列分解 System Message (命题人) 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 小刀和大刀是双胞胎兄弟.今天他们玩一个有意思的游戏. 大刀给小刀准备了一个长度为n ...

  3. [NC13B]贝伦卡斯泰露/[51Nod1400]序列分解

    [NC13B]贝伦卡斯泰露/[51Nod1400]序列分解 题目大意: 给定\(A_{1\sim n}(n\le40)\),问是否能将\(A\)分解成两个相同的子序列? 思路: 折半搜索.时间复杂度\ ...

  4. 【python cookbook】【数据结构与算法】1将序列分解为单独的变量

    如果对象是可迭代的(任何序列),则可以进行分解操作,包括元组.列表.字符串.文件.迭代器以及生成器,可通过简单的一个赋值操作分解为单独的变量. 唯一要求:变量的总数和序列相吻合,否则将出错: Pyth ...

  5. 51nod 1258 序列求和 V4

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1258 1258 序列求和 V4  基准时间限制:8 秒 空间限制:131 ...

  6. 51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]

    1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50 ...

  7. 51nod 1062 序列中最大的数【打表】

    1062 序列中最大的数 题目来源: Ural 1079 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题  收藏  关注 有这样一个序列a: a[0] = 0 a[ ...

  8. 51nod 1228 序列求和(伯努利数)

    1228 序列求和  题目来源: HackerRank 基准时间限制:3 秒 空间限制:131072 KB 分值: 160 难度:6级算法题  收藏  关注 T(n) = n^k,S(n) = T(1 ...

  9. 51nod 1228 序列求和 ( 1^k+2^k+3^k+...+n^k )

    C为组合数,B为伯努利数 具体推到过程略 参考博客:http://blog.csdn.net/acdreamers/article/details/38929067# (我的式子和博客中的不一样,不过 ...

随机推荐

  1. Android开发EditText属性

    Android开发EditText属性 EditText继承关系:View-->TextView-->EditText EditText的属性很多,这里介绍几个:android:hint= ...

  2. 【C#】【MySQL】C# 查询数据库语句@Row:=@Row+1

    如何实现数据库查询产生虚拟的一列序号的功能: ) )AS r; 该语句可以实现产生虚拟的一列数据在MySQL中运行没有问题. 但是在C#里面调用去出现了错误"Parameter '@ROW' ...

  3. 【快报】基于K2 BPM的新一代协同办公门户实践交流会

    2014年2月28日,“基于BPM的新一代协同办公门户”用户实践交流活动在深圳金茂JW万豪酒店3楼Meet Room IV举办.本次会议由K2携手微软共同举办,邀请到的参会企业都是K2 的BPM老客户 ...

  4. C语言 数组做函数参数退化为指针的技术推演

    //数组做函数参数退化为指针的技术推演 #include<stdio.h> #include<stdlib.h> #include<string.h> //一维数组 ...

  5. js 中的算法题,那些经常看到的

    js中遇到的算法题不是很多,可以说基本遇不到.但面试的时候,尤其是一些大公司,总是会出这样那样的算法题,考察一个程序员的逻辑思维能力.如下: 1.回文. 回文是指把相同的词汇或句子,在下文中调换位置或 ...

  6. [MetaHook] R_SparkShower

    By hzqst void R_SparkShower(float *pos) { TEMPENTITY *tent; tent = efx.CL_TempEntAllocNoModel(pos); ...

  7. grootJs 属性过滤器

    index10.html <html><head> <title>属性过滤器</title> <script src="jquery-1 ...

  8. 使用jquery获取url及url参数的方法及定义JQuery扩展方法

    1.jquery获取url很简单,代码如下: window.location.href; 其实只是用到了javascript的基础的window对象,并没有用jquery的知识. 2.jquery获取 ...

  9. jQuery理解之(一)动画与特效

    本节主要降级和学习jQuery的自动显隐,渐入渐出.飞入飞出.自定义动画等. 1.显示和隐藏hide()和show() 对于动画来说,显示和隐藏是最基本的效果之一,本节简单介绍jQuery的显示和隐藏 ...

  10. c# 通过反射获取私有方法

    class Program { static void Main(string[] args) { //通过反射来调私有的成员 Type type = typeof(Person); //Bindin ...