Problem Description

Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe is a very popular coach for his success. He needs some bamboos for his students, so he asked his assistant Bi-Shoe to go to the market and buy them. Plenty of Bamboos of all possible integer lengths (yes!) are available in the market. According to Xzhila tradition,

Score of a bamboo = Φ (bamboo's length)

(Xzhilans are really fond of number theory). For your information, Φ (n) = numbers less than n which are relatively prime (having no common divisor other than 1) to n. So, score of a bamboo of length 9 is 6 as 1, 2, 4, 5, 7, 8 are relatively prime to 9.

The assistant Bi-shoe has to buy one bamboo for each student. As a twist, each pole-vault student of Phi-shoe has a lucky number. Bi-shoe wants to buy bamboos such that each of them gets a bamboo with a score greater than or equal to his/her lucky number. Bi-shoe wants to minimize the total amount of money spent for buying the bamboos. One unit of bamboo costs 1 Xukha. Help him.

Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n ≤ 10000) denoting the number of students of Phi-shoe. The next line contains n space separated integers denoting the lucky numbers for the students. Each lucky number will lie in the range [1, 106].

Output

For each case, print the case number and the minimum possible money spent for buying the bamboos. See the samples for details.

SampleInput

3

5

1 2 3 4 5

6

10 11 12 13 14 15

2

1 1

SampleOutput

Case 1: 22 Xukha

Case 2: 88 Xukha

Case 3: 4 Xukha

题意:

T组数据,每组数据给定1<=n<=1e4,接下来n个整数1<=xi<=1e6,对于每一个xi,找出最小的yi,使euler(yi) >= xi。求yi之和。

思路:

由欧拉函数定义可知,euler(x) < x。所以对每一个x,找大于它的第一个质数即为答案。线性筛法打素数表,二分查找。

AC代码:92MS

 #include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
using namespace std;
typedef long long ll; const int MAXN = 1e6 + ;
const int PRIME_MAX = MAXN / ;
bool vis[MAXN];
int prime[PRIME_MAX], top; void init() {
ll i, j;
top = ;
vis[] = false;
for(i = ; i < MAXN; ++i) {
if(!vis[i]) {
prime[top++] = i;
}
for(j = ; prime[j] * i < MAXN; ++j) {
vis[prime[j] * i] = true;
if(i % prime[j] == )
break;
}
}
} int main() {
init();
int t, n, i, now, k;
scanf("%d", &t);
for(k = ; k <= t; ++k) {
ll ans = ;
scanf("%d", &n);
for(i = ; i <= n; ++i) {
scanf("%d", &now);
ans += *upper_bound(prime, prime + top, now);
}
printf("Case %d: %lld Xukha\n", k, ans);
}
return ;
}

LightOJ-1370 Bi-shoe and Phi-shoe (欧拉函数+二分)的更多相关文章

  1. FZU 1759 欧拉函数 降幂公式

    Description   Given A,B,C, You should quickly calculate the result of A^B mod C. (1<=A,C<=1000 ...

  2. poj3696 快速幂的优化+欧拉函数+gcd的优化+互质

    这题满满的黑科技orz 题意:给出L,要求求出最小的全部由8组成的数(eg: 8,88,888,8888,88888,.......),且这个数是L的倍数 sol:全部由8组成的数可以这样表示:((1 ...

  3. HDU 4483 Lattice triangle(欧拉函数)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4483 题意:给出一个(n+1)*(n+1)的格子.在这个格子中存在多少个三角形? 思路:反着想,所有情 ...

  4. UVa 11426 (欧拉函数 GCD之和) GCD - Extreme (II)

    题意: 求sum{gcd(i, j) | 1 ≤ i < j ≤ n} 分析: 有这样一个很有用的结论:gcd(x, n) = i的充要条件是gcd(x/i, n/i) = 1,因此满足条件的x ...

  5. 【欧拉函数】【HDU1286】 找新朋友

    找新朋友 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  6. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

  7. SPOJ 5152 Brute-force Algorithm EXTREME && HDU 3221 Brute-force Algorithm 快速幂,快速求斐波那契数列,欧拉函数,同余 难度:1

    5152. Brute-force Algorithm EXTREME Problem code: BFALG Please click here to download a PDF version ...

  8. uva 11426 GCD - Extreme (II) (欧拉函数打表)

    题意:给一个N,和公式 求G(N). 分析:设F(N)= gcd(1,N)+gcd(2,N)+...gcd(N-1,N).则 G(N ) = G(N-1) + F(N). 设满足gcd(x,N) 值为 ...

  9. [NOI2010][bzoj2005] 能量采集 [欧拉函数+分块前缀和优化]

    题面: 传送门 思路: 稍微转化一下,可以发现,每个植物到原点连线上植物的数量,等于gcd(x,y)-1,其中xy是植物的横纵坐标 那么我们实际上就是要求2*sigma(gcd(x,y))-n*m了 ...

随机推荐

  1. P4392 [BOI2007]Sound 静音问题

    ---------------------- 链接:Miku ----------------------- 这道题本质上还是个st表,只要两个st表,然后对于每一个点,查询他开始的 长度为m的去年的 ...

  2. go单任务版爬虫

    go单任务版爬虫(爬取珍爱网) 爬虫总体算法 单任务版爬虫架构 任务 获取并打印所在城市第一页用户的详细信息 代码实现 /crawler/main.go package main import ( & ...

  3. python-flask模块注入(SSTI)

    前言: 第一次遇到python模块注入是做ctf的时候,当时并没有搞懂原理所在,看了网上的资料,这里做一个笔记. flask基础: 先看一段python代码: from flask import fl ...

  4. 二、继续学习(主要参考Python编程从入门到实践)

    操作列表 具体内容如下: # 操作列表 # 使用for循环遍历整个列表. # 使用for循环处理数据是一种对数据集执行整体操作的不错的方式. magicians = ['alice', 'david' ...

  5. 论文-MobileNet-V1、ShuffleNet-V1、MobileNet-V2、ShuffleNet-V2、MobileNet-V3

    1.结构对比 1)MobileNet-V1 2)ShuffleNet-V1 3)MobileNet-V2 4)ShuffleNet-V2

  6. ImportError: DLL load failed with error code -1073741795

    Win7,python3.6,pip安装tensorflow之后报错: >>> import tensorflow Traceback (most recent call last) ...

  7. .net core 中如何读取 appsettings.json 相关配置

    appsettings.json如下 { "Logging": { "LogLevel": { "Default": "Debug ...

  8. Uva1640(统计数字出现的次数)

    题意: 统计两个整数a,b之间各个数字(0~9)出现的次数,如1024和1032,他们之间的数字有1024 1025 1026 1027 1028 1029 1030 1031 1032 总共有10个 ...

  9. C#设计模式学习笔记:(1)单例模式

    本笔记摘抄自:https://www.cnblogs.com/PatrickLiu/p/8250985.html,记录一下学习过程以备后续查用. 一.引言 设计模式的分类: 1)依目的: 创建型(Cr ...

  10. JavaSE学习笔记(3)---面向对象三大特性

    JavaSE学习笔记(3)---面向对象三大特性 面向对象的三大特征:继承.封装.多态 1.封装 面向对象编程语言是对客观世界的模拟,客观世界里成员变量都是隐藏在对象内部的,外界无法直接操作和修改.然 ...