LightOJ-1370 Bi-shoe and Phi-shoe (欧拉函数+二分)
Problem Description
Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe is a very popular coach for his success. He needs some bamboos for his students, so he asked his assistant Bi-Shoe to go to the market and buy them. Plenty of Bamboos of all possible integer lengths (yes!) are available in the market. According to Xzhila tradition,
Score of a bamboo = Φ (bamboo's length)
(Xzhilans are really fond of number theory). For your information, Φ (n) = numbers less than n which are relatively prime (having no common divisor other than 1) to n. So, score of a bamboo of length 9 is 6 as 1, 2, 4, 5, 7, 8 are relatively prime to 9.
The assistant Bi-shoe has to buy one bamboo for each student. As a twist, each pole-vault student of Phi-shoe has a lucky number. Bi-shoe wants to buy bamboos such that each of them gets a bamboo with a score greater than or equal to his/her lucky number. Bi-shoe wants to minimize the total amount of money spent for buying the bamboos. One unit of bamboo costs 1 Xukha. Help him.
Input
Input starts with an integer T (≤ 100), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n ≤ 10000) denoting the number of students of Phi-shoe. The next line contains n space separated integers denoting the lucky numbers for the students. Each lucky number will lie in the range [1, 106].
Output
For each case, print the case number and the minimum possible money spent for buying the bamboos. See the samples for details.
SampleInput
3
5
1 2 3 4 5
6
10 11 12 13 14 15
2
1 1
SampleOutput
Case 1: 22 Xukha
Case 2: 88 Xukha
Case 3: 4 Xukha
题意:
T组数据,每组数据给定1<=n<=1e4,接下来n个整数1<=xi<=1e6,对于每一个xi,找出最小的yi,使euler(yi) >= xi。求yi之和。
思路:
由欧拉函数定义可知,euler(x) < x。所以对每一个x,找大于它的第一个质数即为答案。线性筛法打素数表,二分查找。
AC代码:92MS
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
using namespace std;
typedef long long ll; const int MAXN = 1e6 + ;
const int PRIME_MAX = MAXN / ;
bool vis[MAXN];
int prime[PRIME_MAX], top; void init() {
ll i, j;
top = ;
vis[] = false;
for(i = ; i < MAXN; ++i) {
if(!vis[i]) {
prime[top++] = i;
}
for(j = ; prime[j] * i < MAXN; ++j) {
vis[prime[j] * i] = true;
if(i % prime[j] == )
break;
}
}
} int main() {
init();
int t, n, i, now, k;
scanf("%d", &t);
for(k = ; k <= t; ++k) {
ll ans = ;
scanf("%d", &n);
for(i = ; i <= n; ++i) {
scanf("%d", &now);
ans += *upper_bound(prime, prime + top, now);
}
printf("Case %d: %lld Xukha\n", k, ans);
}
return ;
}
LightOJ-1370 Bi-shoe and Phi-shoe (欧拉函数+二分)的更多相关文章
- FZU 1759 欧拉函数 降幂公式
Description Given A,B,C, You should quickly calculate the result of A^B mod C. (1<=A,C<=1000 ...
- poj3696 快速幂的优化+欧拉函数+gcd的优化+互质
这题满满的黑科技orz 题意:给出L,要求求出最小的全部由8组成的数(eg: 8,88,888,8888,88888,.......),且这个数是L的倍数 sol:全部由8组成的数可以这样表示:((1 ...
- HDU 4483 Lattice triangle(欧拉函数)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4483 题意:给出一个(n+1)*(n+1)的格子.在这个格子中存在多少个三角形? 思路:反着想,所有情 ...
- UVa 11426 (欧拉函数 GCD之和) GCD - Extreme (II)
题意: 求sum{gcd(i, j) | 1 ≤ i < j ≤ n} 分析: 有这样一个很有用的结论:gcd(x, n) = i的充要条件是gcd(x/i, n/i) = 1,因此满足条件的x ...
- 【欧拉函数】【HDU1286】 找新朋友
找新朋友 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submi ...
- HDU 1695 GCD(欧拉函数+容斥原理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...
- SPOJ 5152 Brute-force Algorithm EXTREME && HDU 3221 Brute-force Algorithm 快速幂,快速求斐波那契数列,欧拉函数,同余 难度:1
5152. Brute-force Algorithm EXTREME Problem code: BFALG Please click here to download a PDF version ...
- uva 11426 GCD - Extreme (II) (欧拉函数打表)
题意:给一个N,和公式 求G(N). 分析:设F(N)= gcd(1,N)+gcd(2,N)+...gcd(N-1,N).则 G(N ) = G(N-1) + F(N). 设满足gcd(x,N) 值为 ...
- [NOI2010][bzoj2005] 能量采集 [欧拉函数+分块前缀和优化]
题面: 传送门 思路: 稍微转化一下,可以发现,每个植物到原点连线上植物的数量,等于gcd(x,y)-1,其中xy是植物的横纵坐标 那么我们实际上就是要求2*sigma(gcd(x,y))-n*m了 ...
随机推荐
- 使用Gradle推送SpringBoot项目源码到私有仓库
应用场景: 在SpringCloud微服务项目中,通常会划分成多个业务服务,而这些服务之间一般会使用Feign组件进行相互调用,所以在项目开发中会衍生出一个问题:Feign客户端代码该由服务调用方的开 ...
- Blazor初体验之寻找存储client-side jwt token的方法
https://www.cnblogs.com/chen8854/p/securing-your-blazor-apps-authentication-with-clientside-blazor-u ...
- 【Android】java中调用JS的方法
最近因为学校换了新的教务系统,想做一个模拟登陆功能,发现登陆的账号和密码有一个js脚本来进行加密 整理了一下java中执行JS的方法 智强教务 账号 密码 加密方法 var keyStr = &quo ...
- sc 与 net 命令
查看命令的帮助: help sc 或者 help net net: net start mysql 打开服务 net stop mysql 关闭服务 net pause mysql 暂停服务 sc ...
- private、public、this关键字
private关键字 概念:私有的,一种权限修饰符,用来修饰类的成员 特点:被修饰的成员只能在本类中访问 用法: - 1. private 数据类型 变量名: - 2. private 返回值类型 方 ...
- 简单java web制作思路
经过俩天的摸索,和学姐的帮助下终于做出来一个简单地网页版的学生信息添加的系统.接下来说一下答题的思路: 首先我个人习惯先做网页界面,创建3个jsp文件分别是添加界面,成功界面,失败界面.这件看起来更加 ...
- IDEA开发Maven构建SSM项目遇到的坑,action
Request processing failed; nested exception is org.apache.ibatis.binding.BindingException: Invalid b ...
- Java连载75-StringBuffer和StringBuilder
一.StringBuffer和StringBuilder 1.StringBuffer是什么? 答:是一个字符串缓冲区,工作原理:预先在内存中申请一块空间以容纳字符序列,如果预留的空间,则进行自动扩容 ...
- extern关键字详解
基本理解 extern放在变量或者函数之前,表示变量或者函数的定义在别的文件中,提示编译器遇到此变量和函数时在其他模块中寻找其定义. extern有两个作用 1.当它与"C"一起连 ...
- 关于 setw() 函数(C++)
// about setw() #include <iostream> #include <iomanip> #include <cstring> using na ...