# -*- coding: utf-8 -*-

import glob
import os.path
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import gfile
import tensorflow.contrib.slim as slim import tensorflow.contrib.slim.python.slim.nets.inception_v3 as inception_v3 # 处理好之后的数据文件。
INPUT_DATA = 'E:\\flower_processed_data\\flower_processed_data.npy'
# 保存训练好的模型的路径。这里我们可以将使用新数据训练得到的完整模型保存
# 下来,如果计算资源充足,我们还可以在训练完最后的全联接层之后再训练所有
# 网络层,这样可以使得新模型更加贴近新数据。
TRAIN_FILE = 'E:\\train_dir7\\model'
# 谷歌提供的训练好的模型文件地址。
CKPT_FILE = 'E:\\inception_v3\\inception_v3.ckpt' # 定义训练中使用的参数。
LEARNING_RATE = 0.002
STEPS = 3000
BATCH = 32
N_CLASSES = 5 # 不需要从谷歌训练好的模型中加载的参数。这里就是最后的全联接层,因为在
# 新的问题中我们要重新训练这一层中的参数。这里给出的是参数的前缀。
CHECKPOINT_EXCLUDE_SCOPES = 'InceptionV3/Logits,InceptionV3/AuxLogits'
# 需要训练的网络层参数明层,在fine-tuning的过程中就是最后的全联接层。
# 这里给出的是参数的前缀。
TRAINABLE_SCOPES='InceptionV3/Logits,InceptionV3/AuxLogits' # 获取所有需要从谷歌训练好的模型中加载的参数。
def get_tuned_variables():
exclusions = [scope.strip() for scope in CHECKPOINT_EXCLUDE_SCOPES.split(',')]
variables_to_restore = []
# 枚举inception-v3模型中所有的参数,然后判断是否需要从加载列表中
# 移除。
for var in slim.get_model_variables():
excluded = False
for exclusion in exclusions:
if var.op.name.startswith(exclusion):
excluded = True
break
if not excluded:
variables_to_restore.append(var)
return variables_to_restore # 获取所有需要训练的变量列表。
def get_trainable_variables():
scopes = [scope.strip() for scope in TRAINABLE_SCOPES.split(',')]
variables_to_train = []
# 枚举所有需要训练的参数前缀,并通过这些前缀找到所有的参数。
for scope in scopes:
variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope)
variables_to_train.extend(variables)
return variables_to_train def main():
# 加载预处理好的数据。
processed_data = np.load(INPUT_DATA)
training_images = processed_data[0]
n_training_example = len(training_images)
training_labels = processed_data[1]
validation_images = processed_data[2]
validation_labels = processed_data[3]
testing_images = processed_data[4]
testing_labels = processed_data[5]
print("%d training examples, %d validation examples and %d testing examples." % (n_training_example, len(validation_labels), len(testing_labels))) # 定义inception-v3的输入,images为输入图片,labels为每一张图片
# 对应的标签。
images = tf.placeholder(tf.float32, [None, 299, 299, 3], name='input_images')
labels = tf.placeholder(tf.int64, [None], name='labels') # 定义inception-v3模型。因为谷歌给出的只有模型参数取值,所以这里
# 需要在这个代码中定义inception-v3的模型结构。因为模型
# 中使用到了dropout,所以需要定一个训练时使用的模型,一个测试时
# 使用的模型。
with slim.arg_scope(inception_v3.inception_v3_arg_scope()):
logits, _ = inception_v3.inception_v3(images, num_classes=N_CLASSES)
logits1, _ = inception_v3.inception_v3(images, num_classes=N_CLASSES, is_training=False, reuse=True)
logits2, _ = inception_v3.inception_v3(images, num_classes=N_CLASSES, reuse=True)
trainable_variables = get_trainable_variables()
tf.losses.softmax_cross_entropy(tf.one_hot(labels, N_CLASSES), logits, weights=1.0)
train_step = tf.train.RMSPropOptimizer(LEARNING_RATE).minimize(tf.losses.get_total_loss()) # 计算正确率。
with tf.name_scope('evaluation'):
correct_prediction = tf.equal(tf.argmax(logits, 1), labels)
evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) correct_prediction1 = tf.equal(tf.argmax(logits1, 1), labels)
evaluation_step1 = tf.reduce_mean(tf.cast(correct_prediction1, tf.float32)) correct_prediction2 = tf.equal(tf.argmax(logits2, 1), labels)
evaluation_step2 = tf.reduce_mean(tf.cast(correct_prediction2, tf.float32)) load_fn = slim.assign_from_checkpoint_fn(CKPT_FILE,get_tuned_variables(),ignore_missing_vars=True) saver = tf.train.Saver()
with tf.Session() as sess:
# 初始化没有加载进来的变量。
init = tf.global_variables_initializer()
sess.run(init)
# 加载谷歌已经训练好的模型。
print('Loading tuned variables from %s' % CKPT_FILE)
load_fn(sess)
start = 0
end = BATCH
for i in range(STEPS):
sess.run(train_step, feed_dict={
images: training_images[start:end],
labels: training_labels[start:end]})
if i % 30 == 0 or i + 1 == STEPS:
saver.save(sess, TRAIN_FILE, global_step=i)
validation_accuracy = sess.run([evaluation_step,evaluation_step1,evaluation_step2], feed_dict={
images: validation_images, labels: validation_labels})
print('Step %d: Validation accuracy = %.1f%%' % (
i, validation_accuracy[0] * 100.0))
print(validation_accuracy)
start = end
if start == n_training_example:
start = 0
end = start + BATCH
if end > n_training_example:
end = n_training_example # 在最后的测试数据上测试正确率。
test_accuracy = sess.run(evaluation_step, feed_dict={images: testing_images, labels: testing_labels})
print('Final test accuracy = %.1f%%' % (test_accuracy * 100)) if __name__ == '__main__':
main()

吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(4)的更多相关文章

  1. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(3)

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  2. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(2)

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  3. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(1)

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  4. 吴裕雄 python 神经网络——TensorFlow 花瓣识别2

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  5. 吴裕雄 python 神经网络——TensorFlow训练神经网络:花瓣识别

    import os import glob import os.path import numpy as np import tensorflow as tf from tensorflow.pyth ...

  6. 吴裕雄 python 神经网络——TensorFlow 循环神经网络处理MNIST手写数字数据集

    #加载TF并导入数据集 import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.examples.tuto ...

  7. 吴裕雄 python 神经网络TensorFlow实现LeNet模型处理手写数字识别MNIST数据集

    import tensorflow as tf tf.reset_default_graph() # 配置神经网络的参数 INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE ...

  8. 吴裕雄 PYTHON 神经网络——TENSORFLOW 无监督学习处理MNIST手写数字数据集

    # 导入模块 import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 加载数据 from tensor ...

  9. 吴裕雄 python 神经网络——TensorFlow 使用卷积神经网络训练和预测MNIST手写数据集

    import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_dat ...

随机推荐

  1. Yii2.0 高级版修改默认访问控制器

    frontend->config->main-local.php $config = [ 'defaultRoute' => 'index/index',//修改默认访问控制器 'c ...

  2. How To Use These LED Garden Lights

    Are you considering the lighting options for the outdoor garden? Depending on how you use it, LED ga ...

  3. 如何获取object数据的描述符

    const data = { portLand: '78/50', Dublin: '88/52', Lima: '58/40' } Object.defineProperty(data, 'Lima ...

  4. 计算几何-poj2451-HPI

    This article is made by Jason-Cow.Welcome to reprint.But please post the article's address. 题意,求半平面交 ...

  5. map文章

    STL map常用操作简介 http://www.kuqin.com/cpluspluslib/20071231/3264.html STL中map用法详解 http://www.kuqin.com/ ...

  6. 左偏树(p4431)

    难得不是左偏树,而是思维: 这道题在做得时候,有两个性质 1.如果a是一个不下降序列,那么b[i]==a[i]时取得最优解. 2.如果a是一个严格递减序列,则取a序列的中位数x,令b[1]=b[2]= ...

  7. vue+vuex项目中怎么实现input模糊查询

    1,首先给input框添加方法,但是用的是element-ui的组件,对input进行了封装,不能直接用原生的方法!,在element组件中,input框中方法有实例参数$event,代表事件对象  ...

  8. Python的几种主动结束程序方式

    1. sys.exit() 执行该语句会直接退出程序,这也是经常使用的方法,也不需要考虑平台等因素的影响,一般是退出Python程序的首选方法. 该方法中包含一个参数status,默认为0,表示正常退 ...

  9. Python隐藏特性:字符串驻留、常量折叠

    下面是Python字符串的一些微妙的特性,绝对会让你大吃一惊. 案例一: >>> a = "some_string" >>> id(a) 140 ...

  10. 开源分布式系统Druid简谈

    介绍 Druid是一个拥有大数据实时查询和分析的高容错.高性能开源分布式系统,旨在快速处理大规模的数据,并能够实现快速查询和分析.尤其是当发生代码部署.机器故障以及其他产品系统遇到宕机等情况时,Dru ...