# -*- coding: utf-8 -*-

import glob
import os.path
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import gfile
import tensorflow.contrib.slim as slim import tensorflow.contrib.slim.python.slim.nets.inception_v3 as inception_v3 # 处理好之后的数据文件。
INPUT_DATA = 'E:\\flower_processed_data\\flower_processed_data.npy'
# 保存训练好的模型的路径。这里我们可以将使用新数据训练得到的完整模型保存
# 下来,如果计算资源充足,我们还可以在训练完最后的全联接层之后再训练所有
# 网络层,这样可以使得新模型更加贴近新数据。
TRAIN_FILE = 'E:\\train_dir7\\model'
# 谷歌提供的训练好的模型文件地址。
CKPT_FILE = 'E:\\inception_v3\\inception_v3.ckpt' # 定义训练中使用的参数。
LEARNING_RATE = 0.002
STEPS = 3000
BATCH = 32
N_CLASSES = 5 # 不需要从谷歌训练好的模型中加载的参数。这里就是最后的全联接层,因为在
# 新的问题中我们要重新训练这一层中的参数。这里给出的是参数的前缀。
CHECKPOINT_EXCLUDE_SCOPES = 'InceptionV3/Logits,InceptionV3/AuxLogits'
# 需要训练的网络层参数明层,在fine-tuning的过程中就是最后的全联接层。
# 这里给出的是参数的前缀。
TRAINABLE_SCOPES='InceptionV3/Logits,InceptionV3/AuxLogits' # 获取所有需要从谷歌训练好的模型中加载的参数。
def get_tuned_variables():
exclusions = [scope.strip() for scope in CHECKPOINT_EXCLUDE_SCOPES.split(',')]
variables_to_restore = []
# 枚举inception-v3模型中所有的参数,然后判断是否需要从加载列表中
# 移除。
for var in slim.get_model_variables():
excluded = False
for exclusion in exclusions:
if var.op.name.startswith(exclusion):
excluded = True
break
if not excluded:
variables_to_restore.append(var)
return variables_to_restore # 获取所有需要训练的变量列表。
def get_trainable_variables():
scopes = [scope.strip() for scope in TRAINABLE_SCOPES.split(',')]
variables_to_train = []
# 枚举所有需要训练的参数前缀,并通过这些前缀找到所有的参数。
for scope in scopes:
variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope)
variables_to_train.extend(variables)
return variables_to_train def main():
# 加载预处理好的数据。
processed_data = np.load(INPUT_DATA)
training_images = processed_data[0]
n_training_example = len(training_images)
training_labels = processed_data[1]
validation_images = processed_data[2]
validation_labels = processed_data[3]
testing_images = processed_data[4]
testing_labels = processed_data[5]
print("%d training examples, %d validation examples and %d testing examples." % (n_training_example, len(validation_labels), len(testing_labels))) # 定义inception-v3的输入,images为输入图片,labels为每一张图片
# 对应的标签。
images = tf.placeholder(tf.float32, [None, 299, 299, 3], name='input_images')
labels = tf.placeholder(tf.int64, [None], name='labels') # 定义inception-v3模型。因为谷歌给出的只有模型参数取值,所以这里
# 需要在这个代码中定义inception-v3的模型结构。因为模型
# 中使用到了dropout,所以需要定一个训练时使用的模型,一个测试时
# 使用的模型。
with slim.arg_scope(inception_v3.inception_v3_arg_scope()):
logits, _ = inception_v3.inception_v3(images, num_classes=N_CLASSES)
logits1, _ = inception_v3.inception_v3(images, num_classes=N_CLASSES, is_training=False, reuse=True)
logits2, _ = inception_v3.inception_v3(images, num_classes=N_CLASSES, reuse=True)
trainable_variables = get_trainable_variables()
tf.losses.softmax_cross_entropy(tf.one_hot(labels, N_CLASSES), logits, weights=1.0)
train_step = tf.train.RMSPropOptimizer(LEARNING_RATE).minimize(tf.losses.get_total_loss()) # 计算正确率。
with tf.name_scope('evaluation'):
correct_prediction = tf.equal(tf.argmax(logits, 1), labels)
evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) correct_prediction1 = tf.equal(tf.argmax(logits1, 1), labels)
evaluation_step1 = tf.reduce_mean(tf.cast(correct_prediction1, tf.float32)) correct_prediction2 = tf.equal(tf.argmax(logits2, 1), labels)
evaluation_step2 = tf.reduce_mean(tf.cast(correct_prediction2, tf.float32)) load_fn = slim.assign_from_checkpoint_fn(CKPT_FILE,get_tuned_variables(),ignore_missing_vars=True) saver = tf.train.Saver()
with tf.Session() as sess:
# 初始化没有加载进来的变量。
init = tf.global_variables_initializer()
sess.run(init)
# 加载谷歌已经训练好的模型。
print('Loading tuned variables from %s' % CKPT_FILE)
load_fn(sess)
start = 0
end = BATCH
for i in range(STEPS):
sess.run(train_step, feed_dict={
images: training_images[start:end],
labels: training_labels[start:end]})
if i % 30 == 0 or i + 1 == STEPS:
saver.save(sess, TRAIN_FILE, global_step=i)
validation_accuracy = sess.run([evaluation_step,evaluation_step1,evaluation_step2], feed_dict={
images: validation_images, labels: validation_labels})
print('Step %d: Validation accuracy = %.1f%%' % (
i, validation_accuracy[0] * 100.0))
print(validation_accuracy)
start = end
if start == n_training_example:
start = 0
end = start + BATCH
if end > n_training_example:
end = n_training_example # 在最后的测试数据上测试正确率。
test_accuracy = sess.run(evaluation_step, feed_dict={images: testing_images, labels: testing_labels})
print('Final test accuracy = %.1f%%' % (test_accuracy * 100)) if __name__ == '__main__':
main()

吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(4)的更多相关文章

  1. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(3)

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  2. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(2)

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  3. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(1)

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  4. 吴裕雄 python 神经网络——TensorFlow 花瓣识别2

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  5. 吴裕雄 python 神经网络——TensorFlow训练神经网络:花瓣识别

    import os import glob import os.path import numpy as np import tensorflow as tf from tensorflow.pyth ...

  6. 吴裕雄 python 神经网络——TensorFlow 循环神经网络处理MNIST手写数字数据集

    #加载TF并导入数据集 import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.examples.tuto ...

  7. 吴裕雄 python 神经网络TensorFlow实现LeNet模型处理手写数字识别MNIST数据集

    import tensorflow as tf tf.reset_default_graph() # 配置神经网络的参数 INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE ...

  8. 吴裕雄 PYTHON 神经网络——TENSORFLOW 无监督学习处理MNIST手写数字数据集

    # 导入模块 import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 加载数据 from tensor ...

  9. 吴裕雄 python 神经网络——TensorFlow 使用卷积神经网络训练和预测MNIST手写数据集

    import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_dat ...

随机推荐

  1. OPGL+VS2017+GLFW+GLEW配置详细步骤

    OPGL+VS2017+GLFW+GLEW配置详细步骤: https://blog.csdn.net/weixin_40921421/article/details/80211813 原博客地址:ht ...

  2. 消息中间件MQTT

    1.1概念 MQTT(MQ Telemetry Transport) 消息队列遥测传输协议是IBM开发的一种网络应用层的协议,提供轻量级的,支持可发布/可订阅的的消息推送模式,使设备对设备之间的短消息 ...

  3. winform学习(4)控件的添加、显示和隐藏

    窗体的添加.显示与隐藏 可以直接通过工具栏将某个控件直接拖动至UI界面(也可以在工具栏里双击某个控件) 也可以在代码里直接添加:窗体的标识.Controls.Add(控件标识符); Button my ...

  4. linux php 扩展安装

    phpize./configure --with-php-config=/usr/bin/php-config make && make install

  5. form:select的内容

    https://blog.csdn.net/ccclych1/article/details/88395650

  6. 题解 P2146 [NOI2015]软件包管理器

    P2146 [NOI2015]软件包管理器 感觉代码比其他题解更简洁qwq 树链剖分模板题 install x:将1~x的路径上的节点全部变成1(安装x需要先安装1~x) uninstall x:将x ...

  7. IntelliJ IDEA 2017.3尚硅谷-----如何创建模块

  8. 将 master 节点服务器从 k8s 集群中移除并重新加入

    背景 1 台 master 加入集群后发现忘了修改主机名,而在 k8s 集群中修改节点主机名非常麻烦,不如将 master 退出集群改名并重新加入集群(前提是用的是高可用集群). 操作步骤 ssh 登 ...

  9. 计算几何-UVa10652

    This article is made by Jason-Cow.Welcome to reprint.But please post the article's address. 题意见白书,P2 ...

  10. EVE无法安装vim

    有些时候,由于一些错误的操作,可能导致vim无法使用,例如如下情况: root@eve-ng:~# vim /etc/profile-bash: vim: command not found 此时,一 ...