吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(4)
# -*- coding: utf-8 -*- import glob
import os.path
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import gfile
import tensorflow.contrib.slim as slim import tensorflow.contrib.slim.python.slim.nets.inception_v3 as inception_v3 # 处理好之后的数据文件。
INPUT_DATA = 'E:\\flower_processed_data\\flower_processed_data.npy'
# 保存训练好的模型的路径。这里我们可以将使用新数据训练得到的完整模型保存
# 下来,如果计算资源充足,我们还可以在训练完最后的全联接层之后再训练所有
# 网络层,这样可以使得新模型更加贴近新数据。
TRAIN_FILE = 'E:\\train_dir7\\model'
# 谷歌提供的训练好的模型文件地址。
CKPT_FILE = 'E:\\inception_v3\\inception_v3.ckpt' # 定义训练中使用的参数。
LEARNING_RATE = 0.002
STEPS = 3000
BATCH = 32
N_CLASSES = 5 # 不需要从谷歌训练好的模型中加载的参数。这里就是最后的全联接层,因为在
# 新的问题中我们要重新训练这一层中的参数。这里给出的是参数的前缀。
CHECKPOINT_EXCLUDE_SCOPES = 'InceptionV3/Logits,InceptionV3/AuxLogits'
# 需要训练的网络层参数明层,在fine-tuning的过程中就是最后的全联接层。
# 这里给出的是参数的前缀。
TRAINABLE_SCOPES='InceptionV3/Logits,InceptionV3/AuxLogits' # 获取所有需要从谷歌训练好的模型中加载的参数。
def get_tuned_variables():
exclusions = [scope.strip() for scope in CHECKPOINT_EXCLUDE_SCOPES.split(',')]
variables_to_restore = []
# 枚举inception-v3模型中所有的参数,然后判断是否需要从加载列表中
# 移除。
for var in slim.get_model_variables():
excluded = False
for exclusion in exclusions:
if var.op.name.startswith(exclusion):
excluded = True
break
if not excluded:
variables_to_restore.append(var)
return variables_to_restore # 获取所有需要训练的变量列表。
def get_trainable_variables():
scopes = [scope.strip() for scope in TRAINABLE_SCOPES.split(',')]
variables_to_train = []
# 枚举所有需要训练的参数前缀,并通过这些前缀找到所有的参数。
for scope in scopes:
variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope)
variables_to_train.extend(variables)
return variables_to_train def main():
# 加载预处理好的数据。
processed_data = np.load(INPUT_DATA)
training_images = processed_data[0]
n_training_example = len(training_images)
training_labels = processed_data[1]
validation_images = processed_data[2]
validation_labels = processed_data[3]
testing_images = processed_data[4]
testing_labels = processed_data[5]
print("%d training examples, %d validation examples and %d testing examples." % (n_training_example, len(validation_labels), len(testing_labels))) # 定义inception-v3的输入,images为输入图片,labels为每一张图片
# 对应的标签。
images = tf.placeholder(tf.float32, [None, 299, 299, 3], name='input_images')
labels = tf.placeholder(tf.int64, [None], name='labels') # 定义inception-v3模型。因为谷歌给出的只有模型参数取值,所以这里
# 需要在这个代码中定义inception-v3的模型结构。因为模型
# 中使用到了dropout,所以需要定一个训练时使用的模型,一个测试时
# 使用的模型。
with slim.arg_scope(inception_v3.inception_v3_arg_scope()):
logits, _ = inception_v3.inception_v3(images, num_classes=N_CLASSES)
logits1, _ = inception_v3.inception_v3(images, num_classes=N_CLASSES, is_training=False, reuse=True)
logits2, _ = inception_v3.inception_v3(images, num_classes=N_CLASSES, reuse=True)
trainable_variables = get_trainable_variables()
tf.losses.softmax_cross_entropy(tf.one_hot(labels, N_CLASSES), logits, weights=1.0)
train_step = tf.train.RMSPropOptimizer(LEARNING_RATE).minimize(tf.losses.get_total_loss()) # 计算正确率。
with tf.name_scope('evaluation'):
correct_prediction = tf.equal(tf.argmax(logits, 1), labels)
evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) correct_prediction1 = tf.equal(tf.argmax(logits1, 1), labels)
evaluation_step1 = tf.reduce_mean(tf.cast(correct_prediction1, tf.float32)) correct_prediction2 = tf.equal(tf.argmax(logits2, 1), labels)
evaluation_step2 = tf.reduce_mean(tf.cast(correct_prediction2, tf.float32)) load_fn = slim.assign_from_checkpoint_fn(CKPT_FILE,get_tuned_variables(),ignore_missing_vars=True) saver = tf.train.Saver()
with tf.Session() as sess:
# 初始化没有加载进来的变量。
init = tf.global_variables_initializer()
sess.run(init)
# 加载谷歌已经训练好的模型。
print('Loading tuned variables from %s' % CKPT_FILE)
load_fn(sess)
start = 0
end = BATCH
for i in range(STEPS):
sess.run(train_step, feed_dict={
images: training_images[start:end],
labels: training_labels[start:end]})
if i % 30 == 0 or i + 1 == STEPS:
saver.save(sess, TRAIN_FILE, global_step=i)
validation_accuracy = sess.run([evaluation_step,evaluation_step1,evaluation_step2], feed_dict={
images: validation_images, labels: validation_labels})
print('Step %d: Validation accuracy = %.1f%%' % (
i, validation_accuracy[0] * 100.0))
print(validation_accuracy)
start = end
if start == n_training_example:
start = 0
end = start + BATCH
if end > n_training_example:
end = n_training_example # 在最后的测试数据上测试正确率。
test_accuracy = sess.run(evaluation_step, feed_dict={images: testing_images, labels: testing_labels})
print('Final test accuracy = %.1f%%' % (test_accuracy * 100)) if __name__ == '__main__':
main()

吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(4)的更多相关文章
- 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(3)
import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...
- 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(2)
import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...
- 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(1)
import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...
- 吴裕雄 python 神经网络——TensorFlow 花瓣识别2
import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:花瓣识别
import os import glob import os.path import numpy as np import tensorflow as tf from tensorflow.pyth ...
- 吴裕雄 python 神经网络——TensorFlow 循环神经网络处理MNIST手写数字数据集
#加载TF并导入数据集 import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.examples.tuto ...
- 吴裕雄 python 神经网络TensorFlow实现LeNet模型处理手写数字识别MNIST数据集
import tensorflow as tf tf.reset_default_graph() # 配置神经网络的参数 INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE ...
- 吴裕雄 PYTHON 神经网络——TENSORFLOW 无监督学习处理MNIST手写数字数据集
# 导入模块 import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 加载数据 from tensor ...
- 吴裕雄 python 神经网络——TensorFlow 使用卷积神经网络训练和预测MNIST手写数据集
import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_dat ...
随机推荐
- 传奇服务端添加双倍经验卷的方法 双倍经验卷轴DB示例展示
第一步我们在DBC数据库中添加好双倍经验卷轴DB,以下是现成的双倍经验卷DB,导入到DB里面就可以了. 222;双倍经验卷;31;0;1;20;0;0;265;0;0;0;0;0;0;0;0;0;0; ...
- hdu:2089 ( 数位dp入门+模板)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2089 数位dp的模板题,统计一个区间内不含62的数字个数和不含4的数字个数,直接拿数位dp的板子敲就行 ...
- Oracle expdp 多表导出处理
一个项目中需要在oracle数据库某个用户下导出1000多个表,导入到测试库做数据分析测试.很少遇到需要导出这么多表的情况,通常都是按schema导出,或者整库导出.考虑到expdp中include参 ...
- Spring AOP编程(一)-AOP介绍
1. AOP介绍 l 在软件业,AOP为Aspect Oriented Programming的缩写,意为:面向切面编程,通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术 ...
- django-cors-headers
django-cors-headers介绍 一个Django应用程序,向响应头中添加跨域资源共享(CORS)头.这允许从其他来源向Django应用程序发出浏览器内请求,当然也可以自定义中间件然后添加响 ...
- 【PAT甲级】1103 Integer Factorization (30 分)
题意: 输入三个正整数N,K,P(N<=400,K<=N,2<=P<=7),降序输出由K个正整数的P次方和为N的等式,否则输出"Impossible". / ...
- centos 7 添加swap
[root@lab01 /]# cd / [root@lab01 /]# + records in + records out bytes ( MB/s [root@lab01 /]# free -m ...
- Go_file操作
1. FileInfo package main import ( "os" "fmt" ) func main() { /* FileInfo:文件信息 in ...
- 输入两个正整数num1、num2,计算并输出它们的和、差、积、整数商和余数
课本例题 /*输入两个正整数num1.num2,计算并输出它们的和.差.积.整数商和余数.*/ #include<stdio.h> int main() { int num1, num2; ...
- HashMap知识初探
public class TestHashMap { /** * HashMap是数组和链表组合构成的数据结构 * 数组里面每个地方都存了key-value这样的实例Java7叫Entry,Java8 ...