一、Model Representation

还是以房价预测为例,一图胜千言:



h表示一个从xy的函数映射。

二、Cost Function

因为是单变量线性回归,所以假设函数是:

\[h_{\theta}(x)=\theta_0+\theta_1x
\]

所以接下来的问题是怎样确定参数\(\theta_0\)和\(\theta_1\)?

这两个参数会决定我们的模型预测值与训练集的实际数据的差距,这就是建模误差

那么在回归问题中,代价函数选择如下的平方误差函数比较合理:

\[J(\theta_0,\theta_1)=\frac{1}{2m}\sum_{i=1}^{m}(h_{\theta}(x^{(i)})-y^{(i)})^2
\]

m是训练集的样本数目,\(x^{(i)}\)是每个房子的尺寸,\(y^{(i)}\)是实际价格。

只要寻找使得\(J(\theta_0,\theta_1)\)最小的参数即可。

之所以要除以2,主要是为了后续的梯度下降法求导时抵消平方的那个2。

三、Gradient Descent

为了求得代价函数的最小值,采用梯度下降法。

  • 用一个随机的参数组合计算\(J\)
  • 找到一个使得\(J\)下降最多的参数组合,更新参数,直到找到一个局部最优解

就像下山一样,每次都走一步,每次选择下降最快的方向直到局部最低。

在批量梯度下降算法(所有的训练样本都要用到)中,同步更新所有参数:



\(\alpha\)是学习率,表示每一步走多长。

如果\(\alpha\)太小,那么更新的过程就会很缓慢;如果\(\alpha\)太大,可能跳过最低点,导致发散。

当接近局部最优时,由于斜率会越来越小,所以每一步会自动走得很小,不需要减小学习率\(\alpha\)。

四、Gradient Descent For Linear Regression

对之前得回归模型应用梯度下降算法:

对\(J(\theta_0,\theta_1)\)求关于\(\theta_0\)、\(\theta_1\)的偏导数,带入参数更新公式,有:

#Week2 Linear Regression with One Variable的更多相关文章

  1. Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  2. Stanford机器学习---第一讲. Linear Regression with one variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7691571 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  3. 机器学习笔记1——Linear Regression with One Variable

    Linear Regression with One Variable Model Representation Recall that in *regression problems*, we ar ...

  4. Machine Learning 学习笔记2 - linear regression with one variable(单变量线性回归)

    一.Model representation(模型表示) 1.1 训练集 由训练样例(training example)组成的集合就是训练集(training set), 如下图所示, 其中(x,y) ...

  5. Ng第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 2.4  梯度下降 2.5  梯度下 ...

  6. 【cs229-Lecture2】Linear Regression with One Variable (Week 1)(含测试数据和源码)

    从Ⅱ到Ⅳ都在讲的是线性回归,其中第Ⅱ章讲得是简单线性回归(simple linear regression, SLR)(单变量),第Ⅲ章讲的是线代基础,第Ⅳ章讲的是多元回归(大于一个自变量). 本文的 ...

  7. MachineLearning ---- lesson 2 Linear Regression with One Variable

    Linear Regression with One Variable model Representation 以上篇博文中的房价预测为例,从图中依次来看,m表示训练集的大小,此处即房价样本数量:x ...

  8. 斯坦福第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 I 2.4  代价函数的直观理解 I ...

  9. 机器学习 (一) 单变量线性回归 Linear Regression with One Variable

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...

随机推荐

  1. json格式的文件操作2

    1.字典转换为字符串(json.dumps) jsongeshi={"name":"yajuan","age":"10" ...

  2. Python Requests-学习笔记(7)-Cookies

    如果某个响应中包含一些Cookie,你可以快速访问它们: url = 'http://example.com/some/cookie/setting/url' r = requests.get(url ...

  3. 如何改变Xcode字体大小?

    运行Xcode后依次点击左上角Xcode/Preferences/Fonts & Colors里就可以调整,在右边随便点中一个字体就可以调整这个字体的大小和颜色了,按command+a可以将所 ...

  4. python2.7安装pip

  5. 永恒之蓝MS17010复现

    MS17010复现 靶机win7:192.168.41.150 攻击kali:   192.168.41.147 扫描 通过auxiliary/scanner/smb/smb_ms17_010模块扫描 ...

  6. 使用RNN对文本进行分类实践电影评论

    本教程在IMDB大型影评数据集 上训练一个循环神经网络进行情感分类. from __future__ import absolute_import, division, print_function, ...

  7. JS 获取浏览器

    function getInfo() { var s = ""; s = " 网页可见区域宽:" document.body.clientWidth; s = ...

  8. 在Windows中使用VirtualBox安装Ubuntu

    VeitualBox官网下载:https://www.virtualbox.org/wiki/Downloads 安装教程:http://dblab.xmu.edu.cn/blog/337-2/ 安装 ...

  9. python实现线性回归之简单回归

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 首先定义一个基本的回归类,作为各种回归方法的基类: class Regression(o ...

  10. Scrapy模拟登录信息

    携带cookie模拟登录 需要在爬虫里面自定义一个start_requests()的函数 里面的内容: def start_requests(self): cookies = '真实有效的cookie ...