【bzoj1907】树的路径覆盖 树形dp
题目描述

输入

输出

样例输入
1
7
1 2
2 3
2 4
4 6
5 6
6 7
样例输出
3
题解
树形dp
设f[x]表示以x为根的子树完成路径覆盖,且x为某条路径的一端(可以向上延伸)的最小路径数,g[x]表示以x为根的子树完成路径覆盖,且x不为某条路径的一端的最小路径数。
那么考虑点x,只有三种情况:单独成路径、与一条子树的链成路径、与两条子树的链成路径。
这三种情况分别对应三种状态转移方程,具体见代码。
然而看到网上题解大把大把的贪心我也是醉了qaq
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 10010
#define inf 0x3f3f3f3f
using namespace std;
int head[N] , to[N << 1] , next[N << 1] , cnt , fa[N] , son[N] , f[N] , g[N];
void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
void init(int x)
{
int i;
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa[x])
fa[to[i]] = x , son[x] ++ , init(to[i]);
}
void dfs(int x)
{
int i , sum = 0 , t = inf;
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa[x])
dfs(to[i]) , sum += min(f[to[i]] , g[to[i]]) , t = min(t , max(f[to[i]] - g[to[i]] , 0));
f[x] = sum + min(t , 1);
if(son[x] < 2) return;
int m1 = inf , m2 = inf;
for(i = head[x] ; i ; i = next[i])
{
if(to[i] != fa[x])
{
t = max(f[to[i]] - g[to[i]] , 0);
if(t < m1) m2 = m1 , m1 = t;
else if(t < m2) m2 = t;
}
}
g[x] = sum + m1 + m2 - 1;
}
int main()
{
int T;
scanf("%d" , &T);
while(T -- )
{
memset(head , 0 , sizeof(head));
memset(son , 0 , sizeof(son));
memset(f , 0x3f , sizeof(f));
memset(g , 0x3f , sizeof(g));
cnt = 0;
int n , i , x , y;
scanf("%d" , &n);
for(i = 1 ; i < n ; i ++ ) scanf("%d%d" , &x , &y) , add(x , y) , add(y , x);
init(1) , dfs(1);
printf("%d\n" , min(f[1] , g[1]));
}
return 0;
}
【bzoj1907】树的路径覆盖 树形dp的更多相关文章
- BZOJ-1907 树的路径覆盖 贪心
题意:给一个n个点的树,求树的最小路径覆盖.(这个最小路径覆盖不能有重点) 解法:往图论方向想很久,想得太复杂了,其实直接贪心.这个大佬题解写得很好: https://blog.csdn.net/bl ...
- BZOJ1907 树的路径覆盖
ydc题解上写着贪心,后来又说是树形dp...可惜看不懂(顺便骗三连) 其实就是每个叶子开始拉一条链,从下面一路走上来,遇到能把两条链合起来的就合起来就好了. /******************* ...
- bzoj1907: 树的路径覆盖(树形DP)
一眼题... f[i][0]表示在i连接一个子树的最小值,f[i][1]表示在i连接两个子树的最小值,随便转移... 样例挺强的1A了美滋滋... UPD:学习了2314的写法之后短了好多T T #i ...
- bzoj 1907: 树的路径覆盖【贪心+树形dp】
我是在在做网络流最小路径覆盖的时候找到这道题的 然后发现是个贪心+树形dp \( f[i] \)表示在\( i \)为根的子树中最少有几条链,\( v[i] \) 表示在\( i \)为根的子树中\( ...
- [BZOJ 1907] 树的路径覆盖 【树形DP】
题目链接:BZOJ - 1907 题目分析 使用树形 DP,f[x][0] 表示以 x 为根的子树不能与 x 的父亲连接的最小路径数(即 x 是一个折线的拐点). f[x][1] 表示以 x 为根的子 ...
- 『快乐链覆盖 树形dp』
快乐链覆盖 Description 给定一棵 n 个点的树,你需要找至多 k 条互不相交的路径,使得它们的长度之和最大 定义两条路径是相交的:当且仅当存在至少一个点,使得这个点在两条路径中都出现 定义 ...
- BZOJ5123 线段树的匹配(树形dp)
线段树的任意一棵子树都相当于节点数与该子树相同的线段树.于是假装在树形dp即可,记忆化搜索实现,有效状态数是logn级别的. #include<iostream> #include< ...
- 1113: [视频]树形动态规划(TreeDP)8:树(tree)(树形dp状态设计总结)
根据最近做的几道树形dp题总结一下规律.(从这篇往前到洛谷 P1352 ) 这几道题都是在一颗树上,然后要让整棵树的节点或边 满足一种状态.然后点可以影响到相邻点的这种状态 然后求最小次数 那么要从两 ...
- [CEOI2007]树的匹配Treasury(树形DP+高精)
题意 给一棵树,你可以匹配有边相连的两个点,问你这棵树的最大匹配时多少,并且计算出有多少种最大匹配. N≤1000,其中40%的数据答案不超过 108 题解 显然的树形DP+高精. 这题是作为考试题考 ...
随机推荐
- 【Python图像特征的音乐序列生成】第一阶段的任务分配
从即日起到7月20号,项目成员进行了第一次任务分配. 赵同学A.岳同学.周同学,负责了图像数据的情感数据集制作,他们根据自己的经验,对图像进行了情绪提取. 赵同学B全权负责向量映射这一块的网络搭建. ...
- 从SAP客户主数据里直接创建商机(Opportunity)
在SAP CRM Fiori的Account应用里,直接在Account页面创建商机: 在SAP Cloud for Customer里: 要获取更多Jerry的原创文章,请关注公众号"汪子 ...
- 解除phpMyAdmin导入大型MySQL数据库文件大小限制
phpMyAdmin 导入大型数据库文件大小限制配置… 1. 修改 php.ini 文件中下列3项的值: upload_max_filesize, memory_limit 和 post_max_si ...
- JAVA并发编程:相关概念及VOLATILE关键字解析
一.内存模型的相关概念 由于计算机在执行程序时都是在CPU中运行,临时数据存在主存即物理内存,数据的读取和写入都要和内存交互,CPU的运行速度远远快于内存,会大大降低程序执行的速度,于是就有了高速缓存 ...
- CAD控件的鼠标事件(网页版)
_DMxDrawXEvents::MouseEvent CAD控件中的鼠标事件. 参数 说明 LONG lType 事件类型,1鼠标移动,2是鼠标左键按下,3是鼠标右键按下,4是鼠标左键双击 5是鼠标 ...
- 《剑指offer》51:数组中的逆序对
题目描述 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数P.并将P对1000000007取模的结果输出. 即输出P%1000 ...
- dSYM文件
来到新公司后,前段时间就一直在忙,前不久 项目 终于成功发布上线了,最近就在给项目做优化,并排除一些线上软件的 bug,因为项目中使用了友盟统计,所以在友盟给出的错误信息统计中能比较方便的找出客户端异 ...
- Linux - mkdir -p a/b/c
mkdir -p a/b/c -p 会循环创建
- 关于上传文件 非ajax提交 得到后台数据问题
<form name="configForm" id="configForm" method="post" action=" ...
- LeetCode之Weekly Contest 101
前一段时间比较忙,而且做这个对于我来说挺耗时间的,已经间隔了几期的没做总结了,后面有机会补齐.而且本来做这个的目的就是为了防止长时间不做把编程拉下,不在追求独立作出所有题了.以后完赛后稍微尝试下,做不 ...