COURSES
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 18454   Accepted: 7275

Description

Consider a group of N students and P courses. Each student visits zero, one or more than one courses. Your task is to determine whether it is possible to form a committee of exactly P students that satisfies simultaneously the conditions:

  • every student in the committee represents a different course (a student can represent a course if he/she visits that course)
  • each course has a representative in the committee

Input

Your program should read sets of data from the std input. The first line of the input contains the number of the data sets. Each data set is presented in the following format:

P N
Count1 Student1 1 Student1 2 ... Student1 Count1
Count2 Student2 1 Student2 2 ... Student2 Count2
...
CountP StudentP 1 StudentP 2 ... StudentP CountP

The first line in each data set contains two positive integers separated by one blank: P (1 <= P <= 100) - the number of courses and N (1 <= N <= 300) - the number of students. The next P lines describe in sequence of the courses �from course 1 to course P, each line describing a course. The description of course i is a line that starts with an integer Count i (0 <= Count i <= N) representing the number of students visiting course i. Next, after a blank, you抣l find the Count i students, visiting the course, each two consecutive separated by one blank. Students are numbered with the positive integers from 1 to N.
There are no blank lines between consecutive sets of data. Input data are correct.

Output

The result of the program is on the standard output. For each input data set the program prints on a single line "YES" if it is possible to form a committee and "NO" otherwise. There should not be any leading blanks at the start of the line.

Sample Input

2
3 3
3 1 2 3
2 1 2
1 1
3 3
2 1 3
2 1 3
1 1

Sample Output

YES
NO

Source

题目解读:p门课,n个学生. 接下来p行,每行代表第i门课每行先输入这门课的学生数,然后在一次输入这些学生的编号。通过匈牙利算法问:能不能保证每门课至少都有一个学生. 算法要点:最大匹配数>=课程数p ?

匈牙利算法 代码:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <iostream>
#include <string>
#include <vector>
#include <algorithm> using namespace std; vector<int>g[310];
int link[310], vis[310];
int p, n; bool match(int x)
{
for(int i=0; i<g[x].size(); i++ )
{
if(!vis[g[x][i]] )
{
vis[g[x][i]] = true;
if(link[g[x][i]]==-1 || match(link[g[x][i]]) )
{
link[g[x][i]] = x;
return true;
}
}
}
return false;
} int hungary()
{
int tot=0;
memset(link, 255, sizeof(link));
for(int i=1; i<=n; i++)
{
memset(vis, 0, sizeof(vis));
if(match(i) )
{
tot++;
}
}
return tot;
}
int main()
{
int t;
int i, j, k; scanf("%d", &t);
while(t--)
{
scanf("%d %d", &p, &n);
int dd, u;
for(i=1; i<=n; i++)
g[i].clear();
for(i=1; i<=p; i++)
{
scanf("%d", &dd);
while(dd--)
{
scanf("%d", &u);
g[u].push_back(i);
}
}
int ans = hungary();
if(ans >= p)
printf("YES\n");
else
printf("NO\n");
}
return 0;
}

Hopcroft-Karp 算法:

Hopcroft-Karp算法相比普通的匈牙利算法更快,所以当两边集合的点比较多时,为了快速完成匹配可以考虑这个算法,即使是有模板,但代码比较长且比较繁琐,容易写错。

敲的时候要特别注意!

H-K算法代码:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <iostream>
#include <string>
#include <vector>
#include <queue>
#include <algorithm> using namespace std;
int p, n;
vector<int>g[310];
int n1, n2;
int mx[310], my[310];
queue<int>que; int dx[310], dy[310];
bool vis[310]; bool find(int u)
{
for(int i=0; i<g[u].size(); i++)
{
if(!vis[g[u][i]] && dy[g[u][i]] == dx[u]+1 )
{
vis[g[u][i]] = true;
if(!my[g[u][i]] || find(my[g[u][i]]) )
{
mx[u] = g[u][i];
my[g[u][i]] = u;
return true;
}
}
}
return false;
} int matching()
{
memset(mx, 0, sizeof(mx));
memset(my, 0, sizeof(my));
int ans=0; while(true)
{
bool flag=false;
while(!que.empty())
que.pop();
memset(dx, 0, sizeof(dx));
memset(dy, 0, sizeof(dy));
for(int i=1; i<=n1; i++)
if(!mx[i] )
que.push(i);
while(!que.empty() )
{
int u=que.front();
que.pop();
for(int i=0; i<g[u].size(); i++ )
{
if(!dy[g[u][i]] )
{
dy[g[u][i]] = dx[u]+1;
if(my[g[u][i]])
{
dx[my[g[u][i]]] = dy[g[u][i]] + 1;
que.push(my[g[u][i]] );
}
else
flag=true;
}
}
}
if(!flag) break;
memset(vis, false, sizeof(vis));
for(int i=1; i<=n1; i++)
{
if(!mx[i] && find(i) )
ans++;
}
}
return ans;
} int main()
{
int t;
scanf("%d", &t);
int dd, u;
while(t--)
{
scanf("%d %d", &p, &n);
for(int i=1; i<=n; i++)
g[i].clear();
for(int i=1; i<=p; i++)
{
scanf("%d", &dd);
while(dd--)
{
scanf("%d", &u);
g[u].push_back(i);
}
}
n1=n; n2=p;
int ans = matching();
if(ans >= p )
printf("YES\n");
else
printf("NO\n"); }
return 0;
}

poj 1469 COURSES (二分图模板应用 【*模板】 )的更多相关文章

  1. POJ 1469 COURSES 二分图最大匹配 二分图

    http://poj.org/problem?id=1469 这道题我绝壁写过但是以前没有mark过二分图最大匹配的代码mark一下. 匈牙利 O(mn) #include<cstdio> ...

  2. POJ 1274 The Perfect Stall || POJ 1469 COURSES(zoj 1140)二分图匹配

    两题二分图匹配的题: 1.一个农民有n头牛和m个畜栏,对于每个畜栏,每头牛有不同喜好,有的想去,有的不想,对于给定的喜好表,你需要求出最大可以满足多少头牛的需求. 2.给你学生数和课程数,以及学生上的 ...

  3. poj 1469 COURSES(匈牙利算法模板)

    http://poj.org/problem?id=1469 COURSES Time Limit: 1000MS   Memory Limit: 10000K Total Submissions:  ...

  4. Poj(1469),二分图最大匹配

    题目链接:http://poj.org/problem?id=1469 COURSES Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

  5. POJ 1469 COURSES

    COURSES Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 20478   Accepted: 8056 Descript ...

  6. poj 1469 COURSES 题解

    COURSES Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 21515   Accepted: 8455 Descript ...

  7. poj 1469 COURSES 解题报告

    题目链接:http://poj.org/problem?id=1469 题目意思:有 N 个人,P个课程,每一个课程有一些学生参加(0个.1个或多个参加).问 能否使得 P 个课程 恰好与 P 个学生 ...

  8. poj——1469 COURSES

    COURSES Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24192   Accepted: 9426 Descript ...

  9. POJ 1469 COURSES(二部图匹配)

                                                                     COURSES Time Limit: 1000MS   Memory ...

随机推荐

  1. hadoop datanode节点超时时间设置

    datanode进程死亡或者网络故障造成datanode无法与namenode通信,namenode不会立即把该节点判定为死亡,要经过一段时间,这段时间暂称作超时时长. HDFS默认的超时时长为10分 ...

  2. VC++动态链接库(DLL)编程深入浅出(一)

    1.概论 先来阐述一下DLL(Dynamic Linkable Library)的概念,你可以简单的把DLL看成一种仓库,它提供给你一些可以直接拿来用的变量.函数或类.在仓库的发展史上经历了“无库-静 ...

  3. nfs部署和优化 -2

    客户端: cat /etc/passwd 显示用户 weifeng 500   服务端: vim /etc/exports /mnt 192.168.1.105(rw,sync,all_squash, ...

  4. websocket-client connection( Long-lived )

    参考:https://pypi.python.org/pypi/websocket-client/ import websocket import thread import time def on_ ...

  5. spring4.0.0的配置和使用

    1.创建一个javaproject或者webproject,我创建的时webproject,编译器用的时myeclipse2013 2.在lib文件夹以下倒入spring须要的一些核心包例如以下 还需 ...

  6. Java 9 模块解耦的设计策略

    1. 概述 Java 平台模块系统 (Java Platform Module System,JPMS)提供了更强的封装.更可靠且更好的关注点分离. 但所有的这些方便的功能都需要付出代价.由于模块化的 ...

  7. Python结合NC.exe 实现模拟登录&批量填表

    1.工作需求 有很多事项,每个事项分为:名称.种类.时间等,需要把每个事项逐个输入到网页中并提交. 如果用人肉操作的话,流程就是先登录到网站后台,点击“添加”——>输入各项内容——>点击“ ...

  8. 01-jsp与javabean

    <%@page import="java.util.Date"%><%@ page language="java" contentType=& ...

  9. xml 操作

    /////////////////////////////////jaxp对xml文档进行解析/////////////////////////////////////////// 要操作的xml文件 ...

  10. Codeforces 467D Fedor and Essay bfs

    题目链接: 题意: 给定n个单词. 以下有m个替换方式.左边的单词能变成右边的单词. 替换随意次后使得最后字母r个数最少,在r最少的情况下单词总长度最短 输出字母r的个数和单词长度. 思路: 我们觉得 ...