1 导入numpy包

import numpy as np

2 sigmoid函数

def sigmoid(x):
return 1/(1+np.exp(-x))
demox = np.array([1,2,3])
print(sigmoid(demox))
#报错
#demox = [1,2,3]
# print(sigmoid(demox))

结果

[0.73105858 0.88079708 0.95257413]

3 定义逻辑回归模型主体

### 定义逻辑回归模型主体
def logistic(x, y, w, b):
# 训练样本量
num_train = x.shape[0]
# 逻辑回归模型输出
y_hat = sigmoid(np.dot(x,w)+b)
# 交叉熵损失
cost = -1/(num_train)*(np.sum(y*np.log(y_hat)+(1-y)*np.log(1-y_hat)))
# 权值梯度
dW = np.dot(x.T,(y_hat-y))/num_train
# 偏置梯度
db = np.sum(y_hat- y)/num_train
# 压缩损失数组维度
cost = np.squeeze(cost)
return y_hat, cost, dW, db

4 初始化函数

def init_parm(dims):
w = np.zeros((dims,1))
b = 0
return w ,b

5 定义逻辑回归模型训练过程

### 定义逻辑回归模型训练过程
def logistic_train(X, y, learning_rate, epochs):
# 初始化模型参数
W, b = init_parm(X.shape[1])
cost_list = []
for i in range(epochs):
# 计算当前次的模型计算结果、损失和参数梯度
a, cost, dW, db = logistic(X, y, W, b)
# 参数更新
W = W -learning_rate * dW
b = b -learning_rate * db
if i % 100 == 0:
cost_list.append(cost)
if i % 100 == 0:
print('epoch %d cost %f' % (i, cost))
params = {
'W': W,
'b': b
}
grads = {
'dW': dW,
'db': db
}
return cost_list, params, grads

6 定义预测函数

def predict(X,params):
y_pred = sigmoid(np.dot(X,params['W'])+params['b'])
y_preds = [1 if y_pred[i]>0.5 else 0 for i in range(len(y_pred))]
return y_preds

7 生成数据

# 导入matplotlib绘图库
import matplotlib.pyplot as plt
# 导入生成分类数据函数
from sklearn.datasets import make_classification
# 生成100*2的模拟二分类数据集
x ,label = make_classification(
n_samples=100,# 样本个数
n_classes=2,# 样本类别
n_features=2,#特征个数
n_redundant=0,#冗余特征个数(有效特征的随机组合)
n_informative=2,#有效特征,有价值特征
n_repeated=0, # 重复特征个数(有效特征和冗余特征的随机组合)
n_clusters_per_class=2 ,# 簇的个数
random_state=1,
)
print("x.shape =",x.shape)
print("label.shape = ",label.shape)
print("np.unique(label) =",np.unique(label))
print(set(label))
# 设置随机数种子
rng = np.random.RandomState(2)
# 对生成的特征数据添加一组均匀分布噪声https://blog.csdn.net/vicdd/article/details/52667709
x += 2*rng.uniform(size=x.shape)
# 标签类别数
unique_label = set(label)
# 根据标签类别数设置颜色
print(np.linspace(0,1,len(unique_label)))
colors = plt.cm.Spectral(np.linspace(0,1,len(unique_label)))
print(colors)
# 绘制模拟数据的散点图
for k,col in zip(unique_label , colors):
x_k=x[label==k]
plt.plot(x_k[:,0],x_k[:,1],'o',markerfacecolor=col,markeredgecolor="k",
markersize=14)
plt.title('Simulated binary data set')
plt.show();

结果

x.shape = (100, 2)
label.shape = (100,)
np.unique(label) = [0 1]
{0, 1}
[0. 1.]
[[0.61960784 0.00392157 0.25882353 1. ]
[0.36862745 0.30980392 0.63529412 1. ]]

    

复习

# 复习
mylabel = label.reshape((-1,1))
data = np.concatenate((x,mylabel),axis=1)
print(data.shape)

结果

(100, 3)

8 划分数据集

offset = int(x.shape[0]*0.7)
x_train, y_train = x[:offset],label[:offset].reshape((-1,1))
x_test, y_test = x[offset:],label[offset:].reshape((-1,1))
print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)

结果

(70, 2)
(70, 1)
(30, 2)
(30, 1)

9 训练

cost_list, params, grads = logistic_train(x_train, y_train, 0.01, 1000)
print(params['b'])

结果

epoch 0 cost 0.693147
epoch 100 cost 0.568743
epoch 200 cost 0.496925
epoch 300 cost 0.449932
epoch 400 cost 0.416618
epoch 500 cost 0.391660
epoch 600 cost 0.372186
epoch 700 cost 0.356509
epoch 800 cost 0.343574
epoch 900 cost 0.332689
-0.6646648941379839

10 准确率计算

from sklearn.metrics import accuracy_score,classification_report
y_pred = predict(x_test,params)
print("y_pred = ",y_pred)
print(y_pred)
print(y_test.shape)
print(accuracy_score(y_pred,y_test)) #不需要都是1维的,貌似会自动squeeze()
print(classification_report(y_test,y_pred))

结果

y_pred =  [0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0]
[0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0]
(30, 1)
0.9333333333333333
precision recall f1-score support 0 0.92 0.92 0.92 12
1 0.94 0.94 0.94 18 accuracy 0.93 30
macro avg 0.93 0.93 0.93 30
weighted avg 0.93 0.93 0.93 30

11 绘制逻辑回归决策边界

### 绘制逻辑回归决策边界
def plot_logistic(X_train, y_train, params):
# 训练样本量
n = X_train.shape[0]
xcord1,ycord1,xcord2,ycord2 = [],[],[],[]
# 获取两类坐标点并存入列表
for i in range(n):
if y_train[i] == 1:
xcord1.append(X_train[i][0])
ycord1.append(X_train[i][1])
else:
xcord2.append(X_train[i][0])
ycord2.append(X_train[i][1])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1,ycord1,s = 30,c = 'red')
ax.scatter(xcord2,ycord2,s = 30,c = 'green')
# 取值范围
x =np.arange(-1.5,3,0.1)
# 决策边界公式
y = (-params['b'] - params['W'][0] * x) / params['W'][1]
# 绘图
ax.plot(x, y)
plt.xlabel('X1')
plt.ylabel('X2')
plt.show()
plot_logistic(x_train, y_train, params)

结果

    

11 sklearn实现

from sklearn.linear_model import LogisticRegression
clf = LogisticRegression(random_state=0).fit(x_train,y_train)
y_pred = clf.predict(x_test)
print(y_pred)
accuracy_score(y_test,y_pred)

结果

[0 0 1 1 1 1 0 0 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 0]
0.9333333333333333

chapter3——逻辑回归手动+sklean版本的更多相关文章

  1. numpy+sklearn 手动实现逻辑回归【Python】

    逻辑回归损失函数: from sklearn.datasets import load_iris,make_classification from sklearn.model_selection im ...

  2. 逻辑回归原理_挑战者飞船事故和乳腺癌案例_Python和R_信用评分卡(AAA推荐)

    sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&a ...

  3. 逻辑回归算法的原理及实现(LR)

    Logistic回归虽然名字叫"回归" ,但却是一种分类学习方法.使用场景大概有两个:第一用来预测,第二寻找因变量的影响因素.逻辑回归(Logistic Regression, L ...

  4. Theano3.3-练习之逻辑回归

    是官网上theano的逻辑回归的练习(http://deeplearning.net/tutorial/logreg.html#logreg)的讲解. Classifying MNIST digits ...

  5. PRML读书会第四章 Linear Models for Classification(贝叶斯marginalization、Fisher线性判别、感知机、概率生成和判别模型、逻辑回归)

    主讲人 planktonli planktonli(1027753147) 19:52:28 现在我们就开始讲第四章,第四章的内容是关于 线性分类模型,主要内容有四点:1) Fisher准则的分类,以 ...

  6. Spark Mllib逻辑回归算法分析

    原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3816289.html 本文以spark 1.0.0版本MLlib算法为准进行分析 一.代码结构 逻辑回归 ...

  7. Python实践之(七)逻辑回归(Logistic Regression)

    机器学习算法与Python实践之(七)逻辑回归(Logistic Regression) zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习算法与Pyth ...

  8. 学习Machine Leaning In Action(四):逻辑回归

    第一眼看到逻辑回归(Logistic Regression)这个词时,脑海中没有任何概念,读了几页后,发现这非常类似于神经网络中单个神经元的分类方法. 书中逻辑回归的思想是用一个超平面将数据集分为两部 ...

  9. Andrew Ng机器学习课程笔记--week3(逻辑回归&正则化参数)

    Logistic Regression 一.内容概要 Classification and Representation Classification Hypothesis Representatio ...

随机推荐

  1. 【LeetCode】385. Mini Parser 解题报告(Python)

    [LeetCode]385. Mini Parser 解题报告(Python) 标签: LeetCode 题目地址:https://leetcode.com/problems/mini-parser/ ...

  2. The more, The Better(hdu1561)

    The more, The Better Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  3. idea使用教程-常用设置

    [1]进入设置: [2]设置主题: [3]编辑区的字体变大或者变小: [4]鼠标悬浮在代码上有提示: [5]自动导包和优化多余的包: 手动导包:快捷键:alt+enter 自动导包和优化多余的包: [ ...

  4. CSS实现水平垂直居中的方式有哪些?

    CSS实现水平垂直居中的方式有哪些? 基本结构样式: .box { width: 400px; height: 400px; background-color: red; } .inner { wid ...

  5. 为什么别人的 WordPress 网站那么快?

    越来越多的人使用 WordPress 来搭建网站了,W3techs 最新数据统计显示[1],截止到2021年11月3日,全网有43.0%的网站都是基于WordPress 搭建的.那么问题来了,为什么别 ...

  6. Java链式调用

    疯狂的类构造器Builder模式,链式调用 以swagger配置类为例 比如需要返回一个ApiInfo 的类,可以直接new一个ApiInfo,这样一般需要把参数都填上 或者,可以使用他的builde ...

  7. Django_测试板块(六)

    本文初略的记录了Django测试板块相关信息,详情请阅官方文档:https://docs.djangoproject.com/zh-hans/3.1/topics/testing/ 开始写我们的第一个 ...

  8. SSRF服务器端请求伪造漏洞基础

    0x00 思考 1.什么是SSRF漏洞?2.SSRF漏洞的利用方式3.SSRF漏洞绕过4.SSRF漏洞加固 0x01 什么是SSRF漏洞 定义:SSRF漏洞,中文全称为服务端请求伪造漏洞,是一种由攻击 ...

  9. 【代码优化】Bean映射之MapStruct

    [代码优化]Bean映射之MapStruct 一.背景 领域模型相互转换就只能靠手工的 get()/set()? 普遍的做法有以下几种: 手工 get()/set(): 构造器: BeanUtils ...

  10. 【Java常用类】DateTimeFormatter

    DateTimeFormatter 方式一:预定义的标准格式 实例化 如:ISO_LOCAL_DATE_TIME;ISO_LOCAL_DATE;ISO_LOCAL_TIME DateTimeForma ...