题目描述

输入

数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数。 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号。 接下来E行,每行两个整数,第i+2行的两个整数Ai和Bi表示景点Ai和景点Bi之间有一条路。 所有的路都是无向的,即:如果能从A走到B,就可以从B走到A。 输入保证任何两个景点之间不会有多于一条路直接相连,且聪聪和可可之间必有路直接或间接的相连。

输出

输出1个实数,四舍五入保留三位小数,表示平均多少个时间单位后聪聪会把可可吃掉。

样例输入

【输入样例1】
4 3
1 4
1 2
2 3
3 4
【输入样例2】
9 9
9 3
1 2
2 3
3 4
4 5
3 6
4 6
4 7
7 8
8 9

样例输出

【输出样例1】
1.500
【输出样例2】
2.167

提示

【样例说明1】
开始时,聪聪和可可分别在景点1和景点4。
第一个时刻,聪聪先走,她向更靠近可可(景点4)的景点走动,走到景点2,然后走到景点3;假定忽略走路所花时间。
可可后走,有两种可能:
第一种是走到景点3,这样聪聪和可可到达同一个景点,可可被吃掉,步数为1,概率为 。
第二种是停在景点4,不被吃掉。概率为 。
到第二个时刻,聪聪向更靠近可可(景点4)的景点走动,只需要走一步即和可可在同一景点。因此这种情况下聪聪会在两步吃掉可可。
所以平均的步数是1* +2* =1.5步。

对于所有的数据,1≤N,E≤1000。
对于50%的数据,1≤N≤50。

 
总体来说不是太难,只要把题里需要的信息都求出来按题目要求做就行。
SPFA求出以每个点为源点的最短路并用一个数组记录每个点能到达的点有哪些顺便维护出每个点的度。
通过前两个信息就能求出从一个点到另一个点的途中下一步会走向哪个点。
因为最终结束状态不确定,我们可以记忆化搜索,f[i][j]代表聪聪在i点,可可在j点时聪聪抓到可可的期望时间,按题目要求转移就行了。
具体实现看代码吧。

#include<set>
#include<map>
#include<queue>
#include<cmath>
#include<stack>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define ld long double
#define pr pair<int,int>
using namespace std;
int tot;
int vis[1010];
int head[1010];
int to[2010];
int next[2010];
double f[1010][1010];
int d[1010][1010];
int n,m;
int x,y;
int a,b;
int g[1010];
int w[1010][1010];
int p[1010][1010];
queue<int>q;
void add(int x,int y)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
}
void SPFA(int S)
{
memset(d[S],0x3f,sizeof(d[S]));
d[S][S]=0;
q.push(S);
while(!q.empty())
{
int now=q.front();
q.pop();
vis[now]=0;
for(int i=head[now];i;i=next[i])
{
if(d[S][to[i]]>d[S][now]+1)
{
d[S][to[i]]=d[S][now]+1;
if(!vis[to[i]])
{
vis[to[i]]=1;
q.push(to[i]);
}
}
}
}
}
double dfs(int s,int t)
{
if(f[s][t]!=0)
{
return f[s][t];
}
if(s==t)
{
return f[s][t]=(double)0;
}
if(p[p[s][t]][t]==t)
{
return f[s][t]=(double)1;
}
if(p[s][t]==t)
{
return f[s][t]=(double)1;
}
for(int i=1;i<=g[t];i++)
{
f[s][t]+=dfs(p[p[s][t]][t],w[t][i])/(g[t]+1);
}
f[s][t]+=dfs(p[p[s][t]][t],t)/(g[t]+1);
f[s][t]+=1;
return f[s][t];
}
int main()
{
scanf("%d%d%d%d",&n,&m,&a,&b);
for(int i=1;i<=m;i++)
{
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
g[x]++;
g[y]++;
w[x][g[x]]=y;
w[y][g[y]]=x;
}
for(int i=1;i<=n;i++)
{
SPFA(i);
}
memset(p,0x7f,sizeof(p));
for(int i=1;i<=n;i++)
{
for(int j=1;j<=g[i];j++)
{
for(int k=1;k<=n;k++)
{
if(d[i][k]==d[w[i][j]][k]+1&&p[i][k]>w[i][j])
{
p[i][k]=w[i][j];
}
}
}
}
printf("%.3f",dfs(a,b));
}

BZOJ1415[Noi2005]聪聪和可可——记忆化搜索+期望dp的更多相关文章

  1. BZOJ 1415: [Noi2005]聪聪和可可(记忆化搜索+期望)

    传送门 解题思路 还是比较简答的一道题.首先\(bfs\)把每个点到其他点的最短路求出来,然后再记忆化搜索.记搜的时候猫的走法是确定的,搜一下老鼠走法就行了. 代码 #include<iostr ...

  2. 记忆化搜索(DFS+DP) URAL 1223 Chernobyl’ Eagle on a Roof

    题目传送门 /* 记忆化搜索(DFS+DP):dp[x][y] 表示x个蛋,在y楼扔后所需要的实验次数 ans = min (ans, max (dp[x][y-i], dp[x-1][i-1]) + ...

  3. 记忆化搜索(DFS+DP) URAL 1501 Sense of Beauty

    题目传送门 /* 题意:给了两堆牌,每次从首部取出一张牌,按颜色分配到两个新堆,分配过程两新堆的总数差不大于1 记忆化搜索(DFS+DP):我们思考如果我们将连续的两个操作看成一个集体操作,那么这个操 ...

  4. 【BZOJ 1415】 1415: [Noi2005]聪聪和可可 (bfs+记忆化搜索+期望)

    1415: [Noi2005]聪聪和可可 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1640  Solved: 962 Description I ...

  5. hdu3555 Bomb (记忆化搜索 数位DP)

    http://acm.hdu.edu.cn/showproblem.php?pid=3555 Bomb Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  6. HDU 2476 String painter(记忆化搜索, DP)

    题目大意: 给你两个串,有一个操作! 操作时可以把某个区间(L,R) 之间的所有字符变成同一个字符.现在给你两个串A,B要求最少的步骤把A串变成B串. 题目分析: 区间DP, 假如我们直接想把A变成B ...

  7. hdu_3562_B-number(记忆化搜索|数位DP)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=3652 题意:给你一个n,为比n小的能整除13并数字中有13的数有多少个 题解:记忆化搜索:记dp[i] ...

  8. POJ-1088 滑雪 (记忆化搜索,dp)

    滑雪 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 86318 Accepted: 32289 Description Mich ...

  9. HDU 4597 Play Game (记忆化搜索博弈DP)

    题意 给出2*n个数,分两列放置,每列n个,现在alice和bob两个人依次从任意一列的对头或队尾哪一个数,alice先拿,且两个人都想拿最多,问alice最后能拿到数字总和的最大值是多少. 思路 4 ...

随机推荐

  1. 【Codeforces 1137C】Museums Tour

    Codeforces 1137 C 题意:给一个有向图,一周有\(d\)天,每一个点在每一周的某些时刻会开放,现在可以在这个图上从\(1\)号点开始随意地走,问最多能走到多少个开放的点.一个点如果重复 ...

  2. MySQL(三)用正则表达式搜索

    正则表达式是用来匹配文本的特殊的串(字符集合),将一个模式(正则表达式)与一个文本串进行比较: 所有种类的程序设计语言.文本编辑器.操作系统等都支持正则表达式,正则表达式用正则表达式语言来建立: My ...

  3. 最近开始学习Cesium,学习学习。

    最近开始学习Cesium,学习学习.

  4. Luogu1979 NOIP2013D2T3 华容道 搜索、最短路

    题目传送门 题意:给出一个$N \times M$的棋盘,棋盘上有一些块可以移动,有一些块无法移动.$Q$次询问,每一次询问给出三个块$a,b,c$,将$a$块变为空格,空格旁边可移动的块可以与空格交 ...

  5. Ubuntu 16.04 下部署Node.js+MySQL微信小程序商城

    转载于这篇文章 关于pm2看这篇文章 最近在研究小程序,申请了域名之后,再一次来配置环境,根据作者的步骤基本上完成了网站的架构,但由于环境路径等不同,配置上会有所不同,因此记录下来. 1.更新系统和安 ...

  6. Luogu P2482 [SDOI2010]猪国杀

    这道题在模拟界地位不亚于Luogu P4604 [WC2017]挑战在卡常界的地位了吧. 早上到机房开始写,中间因为有模拟赛一直到1点过才正式开始码. 一边膜拜CXR dalao一边写到3点左右,然后 ...

  7. [Oralce][InMemory]如何确定一个表已经被Populate 到In Memory 中?

    [Oralce][InMemory]如何确定一个表已经被Populate 到In Memory 中? 以如下方法来查看 POPULATE_STATUS 是不行的. SQL> select ins ...

  8. windows 脚本

    sudo.vbs http://blog.csdn.net/qidi_huang/article/details/52242053 c:\windows\sudo.vbs 'ShellExecute ...

  9. XenServer虚拟化环境安装记录

    Xenserver,思杰基于Xen的虚拟化服务器.Citrix XenServer是一种全面而易于管理的服务器虚拟化平台,基于强大的 Xen Hypervisor 程序之上.XenServer 是为了 ...

  10. Centos 6.9下部署Oracle 11G数据库环境的操作记录

    操作系统:Centos6.9(64Bit)Oracle:11g .11.2.0.4.0版本Ip地址:172.16.220.139 废话不多说了,下面记录安装过程:1)安装桌面环境 [root@vm01 ...