高斯消元part2
今天整一整高斯消元的模板,正经的
高斯消元主要用于解n元一次线性方程组与判断是否有解
主要思想? 就是高斯消元啊
主要思想是理想状态下消为每行除最后一项外只有一个1,并且每行位置互异,具体看下面。
这里代码的目的主要是求方程的解
代码:
#include<bits/stdc++.h>
using namespace std;
int n;
double a[][];
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++){
for(int j=;j<=n+;j++) scanf("%lf",&a[i][j]);
}
for(int i=;i<=n;i++){
int t=i;
while(a[t][i]==&&t<=n) t++; //判断是否有解,如果每行对于某项系数全为0,则视为无解(无唯一解)
if(t==n+){
cout<<"No Solution";
return ;
}
for(int j=;j<=n+;j++) swap(a[t][j],a[i][j]); //(通行列式)如果首项为0,则挑一行不为零的换下
double x=a[i][i]; //保存系数,以便下面用
for(int j=;j<=n+;j++) a[i][j]/=x;
for(int j=;j<=n;j++){
if(j==i) continue; //这里主要思想放在下面注释point
x=a[j][i];
for(int k=;k<=n+;k++){
a[j][k]-=x*a[i][k];
}
}
}
for(int i=;i<=n;i++) printf("%0.2lf\n",a[i][n+]); //因系数消为1,顾每行最后即为解
return ;
}
point:
对于计算每行“i”,i即表示行数,即对于每行进行消元,理想状态下需把第n行的第n项系数消为1,其余消掉(消为0),所以当j==i时,跳过不做消元处理,只在之前那一步把系数化为1,其他位置的系数留给下面的式子来消,故当j!=i时,用这一行把其他同位置的系数消为0,并且如果有解,则数据保证能消为理想状态(好像证明的一部分已经给出了。。。)
高斯消元part2的更多相关文章
- 【BZOJ-3143】游走 高斯消元 + 概率期望
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2264 Solved: 987[Submit][Status] ...
- 【BZOJ-3270】博物馆 高斯消元 + 概率期望
3270: 博物馆 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 292 Solved: 158[Submit][Status][Discuss] ...
- *POJ 1222 高斯消元
EXTENDED LIGHTS OUT Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9612 Accepted: 62 ...
- [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)
Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...
- hihoCoder 1196 高斯消元·二
Description 一个黑白网格,点一次会改变这个以及与其连通的其他方格的颜色,求最少点击次数使得所有全部变成黑色. Sol 高斯消元解异或方程组. 先建立一个方程组. \(x_i\) 表示这个点 ...
- BZOJ 2844 albus就是要第一个出场 ——高斯消元 线性基
[题目分析] 高斯消元求线性基. 题目本身不难,但是两种维护线性基的方法引起了我的思考. void gauss(){ k=n; F(i,1,n){ F(j,i+1,n) if (a[j]>a[i ...
- SPOJ HIGH Highways ——Matrix-Tree定理 高斯消元
[题目分析] Matrix-Tree定理+高斯消元 求矩阵行列式的值,就可以得到生成树的个数. 至于证明,可以去看Vflea King(炸树狂魔)的博客 [代码] #include <cmath ...
- UVALive 7138 The Matrix Revolutions(Matrix-Tree + 高斯消元)(2014 Asia Shanghai Regional Contest)
题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=6 ...
- [高斯消元] POJ 2345 Central heating
Central heating Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 614 Accepted: 286 Des ...
随机推荐
- Flask实战第5天:页面跳转和重定向
GET和POST请求 在网络请求中有许多请求方式,比如GET, POST, DELETE, PUT等,最常用的就是GET和POST GET 只会在服务器上获取资源,不会更改服务器的状态,这种请求方式推 ...
- Android为TV端助力 使用shared注意事项
不要存放大的key和value!我就不重复三遍了,会引起界面卡.频繁GC.占用内存等等,好自为之! 毫不相关的配置项就不要丢在一起了!文件越大读取越慢,不知不觉就被猪队友给坑了:蓝后,放进defalu ...
- Testlink1.9.17使用方法( 第四章 测试需求管理 )
第四章 测试需求管理 QQ交流群:585499566 需求规格说明书是我们开展测试的依据.首先,我们可以对项目(产品)的需求规格说明书进行分解和整理,将其拆分为多个需求,一个项目可以包含多个需求,一个 ...
- Powershell-创建Module
1.找到默认module路径,ISE启动时自动加载默认领下的Module代码. $env:PSModulePath 2.在其中一个默认路径下创建个文件夹,在文件夹下创建一个.psm1后缀文件,注意文件 ...
- 「Python」为什么Python里面,整除的结果会是小数?
2018-06-08 参考资料:Python学习笔记(4)负数除法和取模运算 先来看三个式子(!这是在Python3.0下的运算结果): 输出结果: ‘//’明明是整除,为什么结果不是整数,而会出现小 ...
- 移动开发的捷径:3种方式轻松创建webapp
移动开发行业发展迅速,为迎合用户的需求,大多数传统互联网公司在主导web网站的同时还需兼顾移动开发方向.在已有PC端网站的基础上,考虑到人力.成本和技术.开发周期等因素,许多公司会选择开发快速.维护便 ...
- cordova插件汇总
1.获取当前应用的版本号 cordova plugin add cordova-plugin-app-version 2.获取网络连接信息 cordova plugin add cordova-plu ...
- 使用 JS 输出螺旋矩阵
关于螺旋矩阵 这是我曾经遇到过的面试题,在 LeetCode 上找到了题目的原型,难度中等.题目描述如下: 给定一个包含 m x n 个元素的矩阵(m 行, n 列),请按照顺时针螺旋顺序,返回矩阵中 ...
- 是时候理解下HTTPS的原理及流程了
1.什么是HTTP协议? HTTP协议是Hyper Text Transfer Protocol(超文本传输协议),位于TCP/IP模型当中的应用层.HTTP协议通过请求/响应的方式,在客户端和服务端 ...
- 【网站公告】请大家不要发表任何涉及“得到App”的内容
大家好,今天我们收到来自杭州某某网络科技有限公司的维权骑士团队的邮件,说他们受某某(天津)文化传播有限公司委托,展开维权.园子里有些博主因为学习“得到App”的课程在博客中记了一些笔记,也被维权. 为 ...