本题是一道求最大子矩阵的题,可以使用悬线法来做,因为是相邻的01矩阵,所以需要对悬线法进行改动。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cstdlib>
#include <cmath>
using namespace std;
const int MAXN=2005;
int init(){
int rv=0,fh=1;
char c=getchar();
while(c<'0'||c>'9'){
if(c=='-') fh=-1;
c=getchar();
}
while(c>='0'&&c<='9'){
rv=(rv<<1)+(rv<<3)+c-'0';
c=getchar();
}
return fh*rv;
}
bool ff[MAXN][MAXN];
int m,n,ans1,ans2,H[MAXN][MAXN],L[MAXN][MAXN],R[MAXN][MAXN],l[MAXN][MAXN],r[MAXN][MAXN];
int main(){
freopen("in.txt","r",stdin);
n=init();m=init();
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
ff[i][j]=init();
}
}
for(int i=1;i<=n;i++){
l[i][1]=0;
for(int j=2;j<=m;j++){
if(ff[i][j]!=ff[i][j-1]){
l[i][j]=l[i][j-1];
}else{
l[i][j]=j-1;
}
}
r[i][m]=m+1;
for(int j=m-1;j>=1;j--){
if(ff[i][j]!=ff[i][j+1]){
r[i][j]=r[i][j+1];
}else r[i][j]=j+1;
}
}
for(int i=1;i<=m;i++){
H[1][i]=1;L[1][i]=l[1][i];R[1][i]=r[1][i];
}
for(int i=2;i<=n;i++){
for(int j=1;j<=m;j++){
if(ff[i][j]!=ff[i-1][j]){
H[i][j]=H[i-1][j]+1;
L[i][j]=max(l[i][j],L[i-1][j]);R[i][j]=min(r[i][j],R[i-1][j]);
}else{
H[i][j]=1;
L[i][j]=l[i][j];R[i][j]=r[i][j];
}
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
int len=min(H[i][j],R[i][j]-L[i][j]-1);
ans1=max(ans1,len*len);
ans2=max(ans2,H[i][j]*(R[i][j]-L[i][j]-1));
}
}
cout<<ans1<<endl<<ans2<<endl;
fclose(stdin);
return 0;
}

方法2:对于输入的时候进行预处理,将横纵坐标和为偶数的点取反,a[i][j] ^= (i ^ j) & 1,问题就化为了求最大的01子矩阵的问题。

方法三:单调栈/并查集

洛谷 [P1169] [ZJOI2007] 最大的正方形的更多相关文章

  1. 洛谷 P1169 [ZJOI2007]棋盘制作

    2016-05-31 14:56:17 题目链接: 洛谷 P1169 [ZJOI2007]棋盘制作 题目大意: 给定一块矩形,求出满足棋盘式黑白间隔的最大矩形大小和最大正方形大小 解法: 神犇王知昆的 ...

  2. 【题解】洛谷P1169 [ZJOI2007] 棋盘制作(坐标DP+悬线法)

    次元传送门:洛谷P1169 思路 浙江省选果然不一般 用到一个从来没有听过的算法 悬线法: 所谓悬线法 就是用一条线(长度任意)在矩阵中判断这条线能到达的最左边和最右边及这条线的长度 即可得到这个矩阵 ...

  3. 洛谷 P1169 [ZJOI2007]棋盘制作 (悬线法)

    和玉蟾宫很像,条件改成不相等就行了. 悬线法题目 洛谷 P1169  p4147  p2701  p1387 #include<cstdio> #include<algorithm& ...

  4. 洛谷P1169 [ZJOI2007]棋盘制作 悬线法 动态规划

    P1169 [ZJOI2007]棋盘制作 (逼着自己做DP 题意: 给定一个包含0,1的矩阵,求出一个面积最大的正方形矩阵和长方形矩阵,要求矩阵中相邻两个的值不同. 思路: 悬线法. 用途: 解决给定 ...

  5. [洛谷P1169] [ZJOI2007] 棋盘制作 解题报告(悬线法+最大正方形)

    题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个 8×8 大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳. 而我 ...

  6. 洛谷P1169[ZJOI2007]棋盘制作

    题目 一道悬线法的裸题,悬线法主要是可以处理最大子矩阵的问题. 而这道题就是比较经典的可以用悬线法来处理的题. 而悬线法其实就是把矩阵中对应的每个位置上的元素分别向左向上向右,寻找到不能到达的地方,然 ...

  7. 洛谷 P1169||bzoj1057 [ZJOI2007]棋盘制作

    洛谷P1169 bzoj1057 这个题目跟最大全0子矩阵是类似的.正方形的话,只要把任意极大子正方形(”极大“定义见后面的”论文“)当成把某个极大子矩形去掉一块变成正方形即可,容易解决. 解法1:看 ...

  8. BZOJ1047或洛谷2216 [HAOI2007]理想的正方形

    BZOJ原题链接 洛谷原题链接 显然可以用数据结构或\(ST\)表或单调队列来维护最值. 这里采用单调队列来维护. 先用单调队列维护每一行的最大值和最小值,区间长为正方形长度. 再用单调队列维护之前维 ...

  9. BZOJ1058或洛谷1110 [ZJOI2007]报表统计

    BZOJ原题链接 洛谷原题链接 STL 本题可以直接使用\(\mathtt{STL\ multiset}\)水过去. 因为本题插入数的操作实际上就是将原数列分为\(n\)段,在每一段的末尾插入数,所以 ...

随机推荐

  1. codeforces 746C 模拟

    C. Tram time limit per test 1 second memory limit per test 256 megabytes input standard input output ...

  2. Effective Java 第三版——23. 优先使用类层次而不是标签类

    Tips <Effective Java, Third Edition>一书英文版已经出版,这本书的第二版想必很多人都读过,号称Java四大名著之一,不过第二版2009年出版,到现在已经将 ...

  3. c++(排序二叉树删除)

    相比较节点的添加,平衡二叉树的删除要复杂一些.因为在删除的过程中,你要考虑到不同的情况,针对每一种不同的情况,你要有针对性的反应和调整.所以在代码编写的过程中,我们可以一边写代码,一边写测试用例.编写 ...

  4. POJ 3278 Catch That Cow(模板——BFS)

    题目链接:http://poj.org/problem?id=3278 Description Farmer John has been informed of the location of a f ...

  5. ThinkPHP3.2基础知识(三)

    1.如何开启调试模式,开启调试模式有什么用处? // 开启调试模式 建议开发阶段开启 部署阶段注释或者设为false define('APP_DEBUG',True); 开启调试模式的用处:方便及时发 ...

  6. ip 百度地图 php

    已知一个IP $ipname=api_hits($DT_IP); -------------- //apifunction getAddressComponent($ak, $longitude, $ ...

  7. 版本控制——TortoiseSVN (4)多版本并行开发 B

    =================================版权声明================================= 版权声明:原创文章 禁止转载  请通过右侧公告中的“联系邮 ...

  8. ElasticSearch快速指南

    ElasticSearch是基于Apache Lucene的分布式搜索引擎, 提供面向文档的搜索服务. 安装ElasticSearch 文档 创建文档 访问文档 更新文档 删除文档 索引 分析器 类型 ...

  9. 【开发技术】 使用JSP开发WEB应用系统-------笔记

    1.主机IP地址是:localhost     or    127.0.0.1    or     实际的IP地址 2.Tomcat 服务器是一个免费的开放源代码的Web 应用服务器 3.WebRoo ...

  10. NSDate的常用用法

    1. 创建或初始化可用以下方法 用于创建NSDate实例的类方法有 + (id)date; 返回当前时间 + (id)dateWithTimeIntervalSinceNow:(NSTimeInter ...