概述:

  RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间的最小/大值。对于一次查询,可以暴力地O(n),但是当查询次数很多的时候,这样的暴力就无法进行了。这时我们可以通过RMQ算法来解决这个问题。

RMQ(ST):(关于学习RMQ的博客:框架即讲解比较详细具体代码比较好

  ST(Sparse Table)算法是一个非常有名的在线处理RMQ问题的算法,它可以在O(nlogn)时间内进行预处理,然后在O(1)时间内回答每个查询。

  首先是预处理,用动态规划(DP)解决。设A[i]是要求区间最值的数列,F[i, j]表示从第i个数起连续2^j个数中的最大值。例如数列3 2 4 5 6 8 1 2 9 7,F[1,0]表示第1个数起,长度为2^0=1的最大值,其实就是3这个数。 F[1,2]=5,F[1,3]=8,F[2,0]=2,F[2,1]=4……从这里可以看出F[i,0]其实就等于A[i]。这样,DP的状态、初值都已经有了,剩下的就是状态转移方程。我们把F[i,j]平均分成两段(因为f[i,j]一定是偶数个数字),从i到i+2^(j-1)-1为一段,i+2^(j-1)到i+2^j-1为一段(长度都为2^(j-1))。用上例说明,当i=1,j=3时就是3,2,4,5 和 6,8,1,2这两段。F[i,j]就是这两段的最大值中的最大值。于是我们得到了动态规划方程F[i, j]=max(F[i,j-1], F[i + 2^(j-1),j-1])。

然后是查询。取k=[log2(j-i+1)],则有:RMQ(A, i, j)=min{F[i,k],F[j-2^k+1,k]}。 举例说明,要求区间[2,8]的最大值,就要把它分成[2,5]和[5,8]两个区间,因为这两个区间的最大值我们可以直接由f[2,2]和f[5,2]得到。

 int vec[MAX_N];
int dp[MAX_N][];
void ST(int N)
{
for(int i=;i<=N;i++) dp[i][] = vec[i];
for(int j=;(<<j) <= N;j++)
{
for(int i=;i+(<<j)-<=N;i++)
{
dp1[i][j] = max(dp[i][j-],dp[i+(<<j-)][j-]); //由于移位操作的优先度低,1<<j-1 = 1<<(j-1);
}
}
}
int RMQ(int l,int r)
{
int k = ;
while((<<k+) <= r-l+) k++;
return max(dp1[l][k],dp1[r-(<<k)+][k]);
}

POJ-2364

 #include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
const int MAX_N = 5e4+;
const int INF = 1e9+;
int vec[MAX_N];
int dp1[MAX_N][];
int dp2[MAX_N][];
void ST(int N)
{
for(int i=;i<=N;i++) dp1[i][] = dp2[i][] = vec[i];
for(int j=;(<<j)<=N;j++)
{
for(int i=;i+(<<j)- <= N;i++)
{
dp1[i][j] = max(dp1[i][j-],dp1[i+(<<j-)][j-]);
dp2[i][j] = min(dp2[i][j-],dp2[i+(<<j-)][j-]);
}
}
}
int RMQ(int l,int r)
{
int k = ;
while((<<k+) <= r-l+) k++;
return max(dp1[l][k],dp1[r-(<<k)+][k]) - min(dp2[l][k],dp2[r-(<<k)+][k]);
}
int main()
{
int N,M,T;
while(cin>>N>>M)
{
for(int i=;i<=N;i++)
{
scanf("%d",&vec[i]);
}
ST(N);
for(int i=;i<M;i++)
{
int l,r;
scanf("%d%d",&l,&r);
int ans = RMQ(l,r);
printf("%d\n",ans);
}
}
return ;
}

RMQ算法 (ST算法)的更多相关文章

  1. RMQ的ST算法

    ·RMQ的ST算法    状态设计:        F[i, j]表示从第i个数起连续2^j个数中的最大值    状态转移方程(二进制思想):        F[i, j]=max(F[i,j-1], ...

  2. [总结]RMQ问题&ST算法

    目录 一.ST算法 二.ST算法の具体实现 1. 初始化 2. 求出ST表 3. 询问 三.例题 例1:P3865 [模板]ST表 例2:P2880 [USACO07JAN]平衡的阵容Balanced ...

  3. RMQ(ST算法)

    RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列a,回答若干询问RMQ(A,i,j)(i, j<=n),返回数列a中下标在i ...

  4. RMQ之ST算法模板

    #include<stdio.h> #include<string.h> #include<iostream> using namespace std; ; ],M ...

  5. RMQ问题+ST算法

    一.相关定义 RMQ问题 求给定区间的最值: 一般题目给定许多询问区间. 常见问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间的最小/大 ...

  6. RMQ问题——ST算法

    比赛当中,常会出现RMQ问题,即求区间最大(小)值.我们该怎样解决呢? 主要方法有线段树.ST.树状数组.splay. 例题 题目描述 2008年9月25日21点10分,酒泉卫星发射中心指控大厅里,随 ...

  7. LCA在线算法ST算法

    求LCA(近期公共祖先)的算法有好多,按在线和离线分为在线算法和离线算法. 离线算法有基于搜索的Tarjan算法较优,而在线算法则是基于dp的ST算法较优. 首先说一下ST算法. 这个算法是基于RMQ ...

  8. RMQ问题ST算法 (还需要进一步完善)

    /* RMQ(Range Minimum/Maximum Query)问题: RMQ问题是求给定区间中的最值问题.当然,最简单的算法是O(n)的,但是对于查询次数很多(设置多大100万次),O(n)的 ...

  9. RMQ 问题 ST 算法(模板)

    解决区间查询最大值最小值的问题 用 $O(N * logN)$ 的复杂度预处理 查询的时候只要 $O(1)$ 的时间  这个算法是 real 小清新了   有一个长度为 N 的数组进行 M 次查询 可 ...

  10. RMQ之ST算法

    #include <stdio.h> #include <string.h> ; int a[N]; ]; inline int min(const int &a, c ...

随机推荐

  1. python的time模块常用内置函数

    1.Python time time()方法 Python time time() 返回当前时间的时间戳(1970纪元后经过的浮点秒数). time()方法语法: time.time() 举例: #! ...

  2. Java基础day01

    linux:1免费 开源的操作系统,Java主要是服务器端的开发 2与window,目录结构.安全性比后者高 3常用命令 pwd.ls.cd:vi(打开一个记事本若没有就新建一个记事本) 绝对路径:都 ...

  3. python常用模块详解

    python常用模块详解 什么是模块? 常见的场景:一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀. 但其实import加载的模块分为四个通用类别: 1 使用p ...

  4. MySQL数据库操作

    一创建数据库 1 语法(help create database) CREATE DATABASE 数据库名 charset utf8; 2 数据库命名规则: 可以由字母.数字.下划线.@.#.$ 区 ...

  5. 登陆模块的进化史,带大家回顾java学习历程(一)

    一直在想着写点特别点的东西,让有兴趣学编程的人确实能学到点干货,今天就来随意写写. 大家在网上查找资料看到最多的demo估计就是登陆功能的演示了,为何大家偏爱拿登陆来做demo呢?因为行业应用类程序的 ...

  6. echart

    先介绍echart: 官网: http://echarts.baidu.com  看名字就知道是百度出品的.       ECharts,一个纯 Javascript 的图表库,可以流畅的运行在 PC ...

  7. input表单的type属性详解,不同type不同属性之间区别

    目标:详解表单input标签type属性常用的属性值 一.input标签和它的type属性 PS:input 元素可以用来生成一个供用户输入数据的简单文本框. 在默认的情况下, 什么样的数据均可以输入 ...

  8. JavaScript作用域,内部函数比参数优先级高

      var x=0; f(); console.log(x); var f=function(){ x=1; } f(); console.log(x); function f(){ x=2; } f ...

  9. iOS 动画篇 (三) CADisplayLink与CoreGraphics实现动画

    本文主要介绍利用CoreGraphics和CADisplayLink来实现一个注水动画.来一个效果图先: 在介绍注水动画前,先介绍利用CoreGraphics实现进度条的绘制. 一.扇形进度绘制 效果 ...

  10. 【Docker】安装Docker及基本使用

    该文以CentOS系统为例,介绍Docker安装及基本使用.为了简化安装流程,Docker 官方提供了一套安装脚本,CentOS 系统上可以使用这套脚本安装: curl -sSL https://ge ...