题意翻译

给定一个 2×n 的矩阵,现从中选择若干数,且任意两个数不上下或左右相邻,求这些数的和最大是多少?

题目描述

Finally, a basketball court has been opened in SIS, so Demid has decided to hold a basketball exercise session. 2 \cdot n2⋅n students have come to Demid's exercise session, and he lined up them into two rows of the same size (there are exactly nn people in each row). Students are numbered from 11 to nn in each row in order from left to right.

Now Demid wants to choose a team to play basketball. He will choose players from left to right, and the index of each chosen player (excluding the first one) will be strictly greater than the index of the previously chosen player. To avoid giving preference to one of the rows, Demid chooses students in such a way that no consecutive chosen students belong to the same row. The first student can be chosen among all 2n2n students (there are no additional constraints), and a team can consist of any number of students.

Demid thinks, that in order to compose a perfect team, he should choose students in such a way, that the total height of all chosen students is maximum possible. Help Demid to find the maximum possible total height of players in a team he can choose.

输入输出格式

输入格式:

The first line of the input contains a single integer nn ( 1 \le n \le 10^51≤n≤105 ) — the number of students in each row.

The second line of the input contains nn integers h_{1, 1}, h_{1, 2}, \ldots, h_{1, n}h1,1​,h1,2​,…,h1,n​ ( 1 \le h_{1, i} \le 10^91≤h1,i​≤109 ), where h_{1, i}h1,i​ is the height of the ii -th student in the first row.

The third line of the input contains nn integers h_{2, 1}, h_{2, 2}, \ldots, h_{2, n}h2,1​,h2,2​,…,h2,n​ ( 1 \le h_{2, i} \le 10^91≤h2,i​≤109 ), where h_{2, i}h2,i​ is the height of the ii -th student in the second row.

输出格式:

Print a single integer — the maximum possible total height of players in a team Demid can choose.

输入输出样例

输入样例#1:

5
9 3 5 7 3
5 8 1 4 5
输出样例#1:

29
输入样例#2:

3
1 2 9
10 1 1
输出样例#2:

19
输入样例#3:

1
7
4
输出样例#3:

7

说明

In the first example Demid can choose the following team as follows:

In the second example Demid can choose the following team as follows:

题解出处:https://www.luogu.org/problemnew/solution/CF1195C

很水的一道C题……目测难度在黄~绿左右。请各位切题者合理评分。

注意到可以选择的球员编号是严格递增的,因此可以把状态的第一维定义为球员编号,第二维描述编号同为 ii 的两名球员的选取情况。

定义状态:f[i][0/1/2]f[i][0/1/2] 表示选取了编号在 ii 及以前的球员,所能得到的身高总和最大值。其中,第二维的 00 表示编号为 ii 的球员一个都不选;11 表示只选上面一个;ii 表示只选下面一个。(显然没有上下都选的情况)

状态转移方程:

f[i][0]=max{f[i−1][0],f[i−1][1],f[i−1][2]}f[i][1]=max\lbrace f[i-1][0],f[i-1][2]\rbrace+height[i][1]f[i][1]=max{f[i−1][0],f[i−1][2]}+height[i][1]f[i][2]=max\lbrace f[i-1][0],f[i-1][1]\rbrace+height[i][2]f[i][2]=max{f[i−1][0],f[i−1][1]}+height[i][2]

Update: 用贪心可以证明,在最优解中,不会出现连续两列一个不取的情况。因此, f[i][0]f[i][0] 其实没有必要考虑来自 f[i-1][0]f[i−1][0] 的状态转移。

代码如下:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int N;
ll h[][];
ll f[][];
int main() {
cin >> N;
for (register int i = ; i <= N; ++i) cin >> h[i][];
for (register int i = ; i <= N; ++i) cin >> h[i][];
f[][] = ;
f[][] = h[][];
f[][] = h[][];
for (register int i = ; i <= N; ++i) {
f[i][] = max(f[i - ][], max(f[i - ][], f[i - ][]));
f[i][] = max(f[i - ][], f[i - ][]) + h[i][];
f[i][] = max(f[i - ][], f[i - ][]) + h[i][];
}
cout << max(f[N][], max(f[N][], f[N][]));
return ;
}

CF1195C Basketball Exercise (dp + 贪心)的更多相关文章

  1. C. Basketball Exercise dp

    C. Basketball Exercise time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  2. Codeforces Round #304 (Div. 2) C. Basketball Exercise (DP)

    题意:给你两个长度相同的数组,每次从两个数组中选数(也可以不选),但是不可以在同一个数组中连续选两次,问能选的最大值是多少? 题解:dp,\(dp[i][0]\)表示第\(i\)个位置不选,\(dp[ ...

  3. 【bzoj4027】[HEOI2015]兔子与樱花 树形dp+贪心

    题目描述 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接,我们可以把它 ...

  4. BZOJ 2021 [Usaco2010 Jan]Cheese Towers:dp + 贪心

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2021 题意: John要建一个奶酪塔,高度最大为m. 他有n种奶酪.第i种高度为h[i]( ...

  5. 洛谷P2507 [SCOI2008]配对 题解(dp+贪心)

    洛谷P2507 [SCOI2008]配对 题解(dp+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1299251 链接题目地址:洛谷P2507 [S ...

  6. Codeforces Round #574 (Div. 2)——C. Basketball Exercise(简单DP)

    题目传送门 题意: 输入n,给出两组均为 n个数字的数组a和b,轮流从a和b数组中取出一个数字,要求严格按照当前所选数字的数组下标比上一个所选数字的数组下标更大,计算能够取出的数字加起来的总和最大能为 ...

  7. 【BZOJ-1046】上升序列 DP + 贪心

    1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3723  Solved: 1271[Submit][Stat ...

  8. Codeforces 675E Trains and Statistic(DP + 贪心 + 线段树)

    题目大概说有n(<=10W)个车站,每个车站i卖到车站i+1...a[i]的票,p[i][j]表示从车站i到车站j所需买的最少车票数,求所有的p[i][j](i<j)的和. 好难,不会写. ...

  9. 【HDU 2546】饭卡(DP+贪心)

    贪心:最贵的留到最后买.状态转移方程:dp[j]=dp[j+a[i]]|dp[j],dp[i]表示余下i元. 原来就不足5元,那就不能买啦. #include<cstdio> #inclu ...

随机推荐

  1. 枚举当前系统用户(使用NetUserEnum API枚举)

    using System.Runtime.InteropServices;   [StructLayout(LayoutKind.Sequential, CharSet = CharSet.Unico ...

  2. QT Udp组播(穿透)

      http://blog.csdn.net/victoryknight/article/details/7814243 主题 UDPQt路由器 局域网内的两台机器如果隔有路由器,那么这两台机器之间不 ...

  3. java集合框架collection(4)HashMap和Hashtable的区别

    HashMap和Hashtable的区别 HashMap和Hashtable都实现了Map接口,但决定用哪一个之前先要弄清楚它们之间的分别.主要的区别有:线程安全性,同步(synchronizatio ...

  4. 面试官:你了解过Redis对象底层实现吗

    上一章我们讲了Redis的底层数据结构,不了解的人可能会有疑问:这个和平时用的五大对象有啥关系呢?这一章我们就主要解释他们所建立的联系. 看这个文件之前,如果对ziplist.skiplist.int ...

  5. CentOS 7 时间同步方法

    centos 7 时间同步使用的是chrony工具 1.检测chrony包是否安装 [root@martin ~]# rpm -qa|grep chrony 2.安装chrony [root@mart ...

  6. 移动端使用rem.js,解决rem.js 行内元素占位问题

    父级元素: letter-spacing: -0.5em;font-size: 0; 子级元素: letter-spacing: normal; display: inline-block; vert ...

  7. Hadoop 学习之路(七)—— HDFS Java API

    一. 简介 想要使用HDFS API,需要导入依赖hadoop-client.如果是CDH版本的Hadoop,还需要额外指明其仓库地址: <?xml version="1.0" ...

  8. spring 5.x 系列第15篇 —— 整合dubbo (xml配置方式)

    文章目录 一. 项目结构说明 二.项目依赖 三.公共模块(dubbo-common) 四. 服务提供者(dubbo-provider) 4.1 productService是服务的提供者( 商品数据用 ...

  9. vagrant+xdebug

    https://segmentfault.com/a/1190000007789295

  10. 21 | 移动测试神器:带你玩转Appium