NOI P1896 互不侵犯 状压DP
题目描述
在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。
注:数据有加强(2018/4/25)
输入输出格式
输入格式:
只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)
输出格式:
所得的方案数
输入输出样例
3 2
16
思路:
这题一看n<=9,二话不说就上状压DP。
f[i][j][k]表示第i行,状态为j,共k个国王时的方案数。
为了减小常数,我们可以先预处理出所有满足要求的状态,存在s数组里,再用sum数组存储当前状态有几个国王。
判断上下是否符合要求也十分简单,乱&一下就可以了,在我的代码中,f[i][j][k]中的j表示第j个状态。
代码:
#include"bits/stdc++.h"
#define db double
#define ll long long
#define vec vector<ll>
#define Mt vector<vec>
#define ci(x) scanf("%d",&x)
#define cd(x) scanf("%lf",&x)
#define cl(x) scanf("%lld",&x)
#define pi(x) printf("%d\n",x)
#define pd(x) printf("%f\n",x)
#define pl(x) printf("%lld\n",x)
//#define rep(i, x, y) for(int i=x;i<=y;i++)
#define rep(i,n) for(int i=0;i<n;i++)
const int N = 1e5+;
const int mod = 1e9 + ;
const int MOD = mod - ;
const int inf = 0x3f3f3f3f;
const db PI = acos(-1.0);
const db eps = 1e-;
using namespace std;
int n,m;
int sum[N];
int s[N];
ll f[][][];
int id=;
int cal(int x){
int ans=;
while(x) ans+=x&,x>>=;
return sum[id]=ans;
}
int main(){
ci(n),ci(m);
int x=(<<n);
for(int i=;i<x;i++) if(!(i&(i<<))) f[][++id][cal(i)]=,s[id]=i;//预处理一行内不冲突的情况
for(int i=;i<=n;i++){
for(int j=;j<=id;j++){
for(int k=;k<=id;k++){
if((s[j]&s[k])||(s[j]&(s[k]>>))||(s[j]&(s[k]<<))) continue;//前后两行不冲突
for(int l=;l+sum[j]<=m;l++) f[i][j][l+sum[j]]+=f[i-][k][l];
}
}
}
ll ans=;
for(int i=;i<=id;i++) ans+=f[n][i][m];//累加
pl(ans);
return ;
}
NOI P1896 互不侵犯 状压DP的更多相关文章
- P1896 [SCOI2005]互不侵犯 状压dp
正解:状压dp 解题报告: 看到是四川省选的时候我心里慌得一批TT然后看到难度之后放下心来觉得大概没有那么难 事实证明我还是too young too simple了QAQ难到爆炸TT我本来还想刚一道 ...
- BZOJ1087[SCOI2005]互不侵犯——状压DP
题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入 只有一行,包含两个数N,K ( ...
- SCOI2005 互不侵犯 [状压dp]
题目传送门 题目大意:有n*n个格子,你需要放置k个国王使得它们无法互相攻击,每个国王的攻击范围为上下左走,左上右上左下右下,共8个格子,求最多的方法数 看到题目,是不是一下子就想到了玉米田那道题,如 ...
- [SCOI2005]互不侵犯 (状压$dp$)
题目链接 Solution 状压 \(dp\) . \(f[i][j][k]\) 代表前 \(i\) 列中 , 已经安置 \(j\) 位国王,且最后一位状态为 \(k\) . 然后就可以很轻松的转移了 ...
- luogu1896 [SCOI2005]互不侵犯 状压DP
题目大意 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子.( 1 <=N <=9, 0 ...
- NOI 2015 寿司晚宴 (状压DP+分组背包)
题目大意:两个人从2~n中随意取几个数(不取也算作一种方案),被一个人取过的数不能被另一个人再取.两个人合法的取法是,其中一个人取的任何数必须与另一个人取的每一个数都互质,求所有合法的方案数 (数据范 ...
- BZOJ 4197 NOI 2015 寿司晚宴 状压DP
4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 694 Solved: 440[Submit][Status] ...
- 状压DP概念 及例题(洛谷 P1896 互不侵犯)
状压DP 就是状态压缩DP.所谓状态压缩,就是将一些复杂的状态压缩起来,一般来说是压缩为一个二进制数,用01来表示某一元素的状态. 比如一排灯泡(5个) 我们可以用一串二进制01串来表示他们的状态 1 ...
- 【题解】洛谷P1896 [SCOI2005] 互不侵犯(状压DP)
洛谷P1896:https://www.luogu.org/problemnew/show/P1896 前言 这是一道状压DP的经典题 原来已经做过了 但是快要NOIP 复习一波 关于一些位运算的知识 ...
随机推荐
- Redis入门--(二)Redis的安装
1.建议安装在Linux服务器上来运行测试的
- 从零开始的全栈工程师——js篇2.19(BOM)
一.BOM 浏览器对象模型 1.window.open(url,ways) url 是打开的网页地址ways 打开的方式 _self 2.window.close() 关闭当前页面 3.window. ...
- ArcGIS Runtime SDK for Android 各版本下载地址
ArcGIS Runtime SDK for Android各版本下载地址:ArcGIS Runtime SDK交流群:249819194 SDK包中主要包含以下内容: 其中里面比较重要的有以下几项: ...
- python if else while for
1 getpass模块 设置密码不显示明文 用户名和密码输入程序: import getpass username = input("username:") password = ...
- C++常用字符串分割方法(转)
1.用strtok函数进行字符串分割 原型: char *strtok(char *str, const char *delim); 功能:分解字符串为一组字符串. 参数说明:str为要分解的字符串, ...
- 时域反射计(TDR)原理与应用
[施工编辑中...] 1. 什么是TDR? TDR = Time Domain Reflectometry 时域反射计TDR用来测量信号在通过某类传输环境传导时引起的反射,如电路板轨迹.电缆.连接器等 ...
- C盘空间太大,分区助手减小分区大小教程
首先看一个需要缩小C盘或需要减少分区空间的一个例子:“我的电脑里C盘剩余空间为530GB,除了C盘外还有一个D盘,但D盘的空间不到30GB,另外还有两个隐藏分区,一个200MB,一个15GB.我想把C ...
- 花3分钟了解下C/C++中的函数可变参简单实现
1.可变参函数的原理 C/C++函数的参数是存放在栈区的,并且参数的入栈是从参数的右边开始,即最后一个参数先入栈,而第一个参数最后才入栈,所以,根据栈的后进先出性质,函数总能找到第一个参数.所以,可变 ...
- 在IE中解决当前安全设置不允许下载该文件的方案
解决方案一: 1.0打开IE后,单击菜单栏中的“工具”菜单,在弹出的菜单中选择“Internet选项”命令: 2.0在弹出“Internet选项”的对话框中,打开“Internet选项”对话框: 3. ...
- IOS 解析XML数据
● 什么是XML ● 全称是Extensible Markup Language,译作“可扩展标记语言” ● 跟JSON一样,也是常用的一种用于交互的数据格式 ● 一般也叫XML文档(XML ...