SRcnn:神经网络重建图片的开山之作
% =========================================================================
% Test code for Super-Resolution Convolutional Neural Networks (SRCNN)
%
% Reference
% Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang. Learning a Deep Convolutional Network for Image Super-Resolution,
% in Proceedings of European Conference on Computer Vision (ECCV),
%
% Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang. Image Super-Resolution Using Deep Convolutional Networks,
% arXiv:1501.00092
%
% Chao Dong
% IE Department, The Chinese University of Hong Kong
% For any question, send email to ndc.forward@gmail.com
% ========================================================================= close all;
clear all; %% read ground truth image
im = imread('Set5\butterfly_GT.bmp');
%im = imread('Set14\zebra.bmp'); %% set parameters
up_scale = ;
model = 'model\9-5-5(ImageNet)\x3.mat';
% up_scale = ;
% model = 'model\9-3-5(ImageNet)\x3.mat';
% up_scale = ;
% model = 'model\9-1-5(91 images)\x3.mat';
% up_scale = ;
% model = 'model\9-5-5(ImageNet)\x2.mat';
% up_scale = ;
% model = 'model\9-5-5(ImageNet)\x4.mat'; %% work on illuminance only
if size(im,)>
im = rgb2ycbcr(im);
im = im(:, :, );
end
im_gnd = modcrop(im, up_scale); %保证图像被up_scale整除
im_gnd = single(im_gnd)/; %Single(单精度浮点型)变量存储为 IEEE 位( 个字节)浮点数值的形式,它的范围在负数的时候是从 -3.402823E38 到 -1.401298E-45,而在正数的时候是从 1.401298E-45 到 3.402823E38。 %% bicubic interpolation
im_l = imresize(im_gnd, /up_scale, 'bicubic'); %缩小3倍
im_b = imresize(im_l, up_scale, 'bicubic'); %又放大三倍 %% SRCNN
im_h = SRCNN(model, im_b); %用网络处理一下 %% remove border %去除没有用的边界
im_h = shave(uint8(im_h * ), [up_scale, up_scale]); %表示变量是无符号整数,范围是0到255.
im_gnd = shave(uint8(im_gnd * ), [up_scale, up_scale]);
im_b = shave(uint8(im_b * ), [up_scale, up_scale]); %% compute PSNR
psnr_bic = compute_psnr(im_gnd,im_b);
psnr_srcnn = compute_psnr(im_gnd,im_h); %% show results
fprintf('PSNR for Bicubic Interpolation: %f dB\n', psnr_bic);
fprintf('PSNR for SRCNN Reconstruction: %f dB\n', psnr_srcnn); %保存 图片
imwrite(im_h,'img_h.png');
imwrite(im_b,'img_b.png');
imwrite(im_gnd,'img_gnd.png'); figure, imshow(im_b); title('Bicubic Interpolation');
figure, imshow(im_h); title('SRCNN Reconstruction'); %imwrite(im_b, ['Bicubic Interpolation' '.bmp']);
%imwrite(im_h, ['SRCNN Reconstruction' '.bmp']);
SRCNN的核心算法:
function im_h = SRCNN(model, im_b) %% load CNN model parameters
load(model);
[conv1_patchsize2,conv1_filters] = size(weights_conv1);
conv1_patchsize = sqrt(conv1_patchsize2);
[conv2_channels,conv2_patchsize2,conv2_filters] = size(weights_conv2);
conv2_patchsize = sqrt(conv2_patchsize2);
[conv3_channels,conv3_patchsize2] = size(weights_conv3);
conv3_patchsize = sqrt(conv3_patchsize2);
[hei, wid] = size(im_b); %% conv1
weights_conv1 = reshape(weights_conv1, conv1_patchsize, conv1_patchsize, conv1_filters);
conv1_data = zeros(hei, wid, conv1_filters);
for i = : conv1_filters
conv1_data(:,:,i) = imfilter(im_b, weights_conv1(:,:,i), 'same', 'replicate');
conv1_data(:,:,i) = max(conv1_data(:,:,i) + biases_conv1(i), );
end %% conv2
conv2_data = zeros(hei, wid, conv2_filters);
for i = : conv2_filters
for j = : conv2_channels
conv2_subfilter = reshape(weights_conv2(j,:,i), conv2_patchsize, conv2_patchsize);
conv2_data(:,:,i) = conv2_data(:,:,i) + imfilter(conv1_data(:,:,j), conv2_subfilter, 'same', 'replicate');
end
conv2_data(:,:,i) = max(conv2_data(:,:,i) + biases_conv2(i), );
end %% conv3
conv3_data = zeros(hei, wid);
for i = : conv3_channels
conv3_subfilter = reshape(weights_conv3(i,:), conv3_patchsize, conv3_patchsize);
conv3_data(:,:) = conv3_data(:,:) + imfilter(conv2_data(:,:,i), conv3_subfilter, 'same', 'replicate');
end %% SRCNN reconstruction
im_h = conv3_data(:,:) + biases_conv3;
图解里面变量和卷积
SRcnn:神经网络重建图片的开山之作的更多相关文章
- 这部分布式事务开山之作,凭啥第一天预售就拿下当当新书榜No.1?
大家好,我是冰河~~ 今天,咱们就暂时不聊[精通高并发系列]了,今天插播一下分布式事务,为啥?因为冰河联合猫大人共同创作的分布式事务领域的开山之作--<深入理解分布式事务:原理与实战>一书 ...
- 【神经网络与深度学习】【计算机视觉】RCNN- 将CNN引入目标检测的开山之作
转自:https://zhuanlan.zhihu.com/p/23006190?refer=xiaoleimlnote 前面一直在写传统机器学习.从本篇开始写一写 深度学习的内容. 可能需要一定的神 ...
- 吴裕雄 python神经网络 水果图片识别(3)
import osimport kerasimport timeimport numpy as npimport tensorflow as tffrom random import shufflef ...
- 论文翻译——R-CNN(目标检测开山之作)
R-CNN论文翻译 <Rich feature hierarchies for accurate object detection and semantic segmentation> 用 ...
- 深度学习(pytorch)-1.基于简单神经网络的图片自动分类
这是pytorch官方的一个例子 官方教程地址:http://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#sphx-glr-b ...
- 深度学习原理与框架-Tensorflow卷积神经网络-cifar10图片分类(代码) 1.tf.nn.lrn(局部响应归一化操作) 2.random.sample(在列表中随机选值) 3.tf.one_hot(对标签进行one_hot编码)
1.tf.nn.lrn(pool_h1, 4, bias=1.0, alpha=0.001/9.0, beta=0.75) # 局部响应归一化,使用相同位置的前后的filter进行响应归一化操作 参数 ...
- 吴裕雄 python神经网络 花朵图片识别(10)
import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...
- 吴裕雄 python神经网络 花朵图片识别(9)
import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...
- 吴裕雄 python神经网络 水果图片识别(4)
# coding: utf-8 # In[1]:import osimport numpy as npfrom skimage import color, data, transform, io # ...
随机推荐
- Debian Gun/linux基本用法
添加软件源:vim /etc/apt/sources.list 在文本中添加如下内容:deb http://mirrors.163.com/debian/ stretch main non-free ...
- [WEB地图] 2017高德地图API WEB开发(key申请,地图搭建)简约教程
前端时间因为公司需要研究 了一下百度的教程 然后写个简约的笔记记录一下自己学习的收获,只为了满足自己暂时的写作热情 高德地图WEB开发(key申请.api)简约教程 1.首先我们需要去“高德地 ...
- 关于WebSocket协议
WebSocket是单个TCP连接上进行全双工通信的协议 在WebSocket的API中,客户端与服务器只需要进行一次握手就可以保持持久的连接,并可以双向传输数据 与HTTP不同的是,WebSocke ...
- 用jquery实现带左右按键的轮播图
成品如下: 简单来说就是点击“右”按钮时,转换到右边的下一幅图片,同时上面的小方块颜色也跟着改变,如果已经是最后一幅图片,再点击“右”,则转换到第一幅图片,是直接向左移找到第一幅图的,明天再做一下无缝 ...
- Java基础学习—思维导图
找到两张Java学习的思维导图,特别适合我这样的菜鸟学习,贴过来和小伙伴分享.
- 产品相关 做产品VS做项目
做产品VS做项目 by:授客 QQ:1033553122 相关定义 根据GB/T19000—2008<质量管理体系基础和术语>,有以下定义 过程process 一组将输入转化为输出的相互关 ...
- linux 文件搜索命令find、-name、-iname、通配符*?、-size、-user、-group、-amin、-cmin、-mmin、-a、-o、-exec/-ok、-inum
尽可能规划好目录结构,少用文件搜索操作,因为它会占用大量的系统资源 find /bin/find find [搜索范围] [匹配条件] find /etc -name initfind /etc -n ...
- 在Windows2003下如何查看IIS站点中对应的PID值
分享:查看IIS站点中对应的PID值 在Win2003下,提供了一个命令,可以方便的查看.cmd -> iisapp -a 显示W3WP.exe PID: 1264 AppPoolID: hxW ...
- 从本机构建Linux应用程序VHD映像
下图描述了总体的虚拟机映像的VHD生成,上传以及发布到 Azure 镜像市场的全过程: 具体步骤如下: 在本地计算机(Windows平台)上安装Hyper-V,并安装您所需要的虚拟机操作系统 在此操作 ...
- mysql执行计划常用说明
MYSQL执行计划顺序原则上是:在所有组中,id值越大,优先级越高,越先执行,id如果相同,可以认为是一组,从上往下顺序执行做执行计划之前,要了解下表统计信息情况:mysql.innodb_table ...