SRcnn:神经网络重建图片的开山之作
% =========================================================================
% Test code for Super-Resolution Convolutional Neural Networks (SRCNN)
%
% Reference
% Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang. Learning a Deep Convolutional Network for Image Super-Resolution,
% in Proceedings of European Conference on Computer Vision (ECCV),
%
% Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang. Image Super-Resolution Using Deep Convolutional Networks,
% arXiv:1501.00092
%
% Chao Dong
% IE Department, The Chinese University of Hong Kong
% For any question, send email to ndc.forward@gmail.com
% ========================================================================= close all;
clear all; %% read ground truth image
im = imread('Set5\butterfly_GT.bmp');
%im = imread('Set14\zebra.bmp'); %% set parameters
up_scale = ;
model = 'model\9-5-5(ImageNet)\x3.mat';
% up_scale = ;
% model = 'model\9-3-5(ImageNet)\x3.mat';
% up_scale = ;
% model = 'model\9-1-5(91 images)\x3.mat';
% up_scale = ;
% model = 'model\9-5-5(ImageNet)\x2.mat';
% up_scale = ;
% model = 'model\9-5-5(ImageNet)\x4.mat'; %% work on illuminance only
if size(im,)>
im = rgb2ycbcr(im);
im = im(:, :, );
end
im_gnd = modcrop(im, up_scale); %保证图像被up_scale整除
im_gnd = single(im_gnd)/; %Single(单精度浮点型)变量存储为 IEEE 位( 个字节)浮点数值的形式,它的范围在负数的时候是从 -3.402823E38 到 -1.401298E-45,而在正数的时候是从 1.401298E-45 到 3.402823E38。 %% bicubic interpolation
im_l = imresize(im_gnd, /up_scale, 'bicubic'); %缩小3倍
im_b = imresize(im_l, up_scale, 'bicubic'); %又放大三倍 %% SRCNN
im_h = SRCNN(model, im_b); %用网络处理一下 %% remove border %去除没有用的边界
im_h = shave(uint8(im_h * ), [up_scale, up_scale]); %表示变量是无符号整数,范围是0到255.
im_gnd = shave(uint8(im_gnd * ), [up_scale, up_scale]);
im_b = shave(uint8(im_b * ), [up_scale, up_scale]); %% compute PSNR
psnr_bic = compute_psnr(im_gnd,im_b);
psnr_srcnn = compute_psnr(im_gnd,im_h); %% show results
fprintf('PSNR for Bicubic Interpolation: %f dB\n', psnr_bic);
fprintf('PSNR for SRCNN Reconstruction: %f dB\n', psnr_srcnn); %保存 图片
imwrite(im_h,'img_h.png');
imwrite(im_b,'img_b.png');
imwrite(im_gnd,'img_gnd.png'); figure, imshow(im_b); title('Bicubic Interpolation');
figure, imshow(im_h); title('SRCNN Reconstruction'); %imwrite(im_b, ['Bicubic Interpolation' '.bmp']);
%imwrite(im_h, ['SRCNN Reconstruction' '.bmp']);
SRCNN的核心算法:
function im_h = SRCNN(model, im_b) %% load CNN model parameters
load(model);
[conv1_patchsize2,conv1_filters] = size(weights_conv1);
conv1_patchsize = sqrt(conv1_patchsize2);
[conv2_channels,conv2_patchsize2,conv2_filters] = size(weights_conv2);
conv2_patchsize = sqrt(conv2_patchsize2);
[conv3_channels,conv3_patchsize2] = size(weights_conv3);
conv3_patchsize = sqrt(conv3_patchsize2);
[hei, wid] = size(im_b); %% conv1
weights_conv1 = reshape(weights_conv1, conv1_patchsize, conv1_patchsize, conv1_filters);
conv1_data = zeros(hei, wid, conv1_filters);
for i = : conv1_filters
conv1_data(:,:,i) = imfilter(im_b, weights_conv1(:,:,i), 'same', 'replicate');
conv1_data(:,:,i) = max(conv1_data(:,:,i) + biases_conv1(i), );
end %% conv2
conv2_data = zeros(hei, wid, conv2_filters);
for i = : conv2_filters
for j = : conv2_channels
conv2_subfilter = reshape(weights_conv2(j,:,i), conv2_patchsize, conv2_patchsize);
conv2_data(:,:,i) = conv2_data(:,:,i) + imfilter(conv1_data(:,:,j), conv2_subfilter, 'same', 'replicate');
end
conv2_data(:,:,i) = max(conv2_data(:,:,i) + biases_conv2(i), );
end %% conv3
conv3_data = zeros(hei, wid);
for i = : conv3_channels
conv3_subfilter = reshape(weights_conv3(i,:), conv3_patchsize, conv3_patchsize);
conv3_data(:,:) = conv3_data(:,:) + imfilter(conv2_data(:,:,i), conv3_subfilter, 'same', 'replicate');
end %% SRCNN reconstruction
im_h = conv3_data(:,:) + biases_conv3;
图解里面变量和卷积


SRcnn:神经网络重建图片的开山之作的更多相关文章
- 这部分布式事务开山之作,凭啥第一天预售就拿下当当新书榜No.1?
大家好,我是冰河~~ 今天,咱们就暂时不聊[精通高并发系列]了,今天插播一下分布式事务,为啥?因为冰河联合猫大人共同创作的分布式事务领域的开山之作--<深入理解分布式事务:原理与实战>一书 ...
- 【神经网络与深度学习】【计算机视觉】RCNN- 将CNN引入目标检测的开山之作
转自:https://zhuanlan.zhihu.com/p/23006190?refer=xiaoleimlnote 前面一直在写传统机器学习.从本篇开始写一写 深度学习的内容. 可能需要一定的神 ...
- 吴裕雄 python神经网络 水果图片识别(3)
import osimport kerasimport timeimport numpy as npimport tensorflow as tffrom random import shufflef ...
- 论文翻译——R-CNN(目标检测开山之作)
R-CNN论文翻译 <Rich feature hierarchies for accurate object detection and semantic segmentation> 用 ...
- 深度学习(pytorch)-1.基于简单神经网络的图片自动分类
这是pytorch官方的一个例子 官方教程地址:http://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#sphx-glr-b ...
- 深度学习原理与框架-Tensorflow卷积神经网络-cifar10图片分类(代码) 1.tf.nn.lrn(局部响应归一化操作) 2.random.sample(在列表中随机选值) 3.tf.one_hot(对标签进行one_hot编码)
1.tf.nn.lrn(pool_h1, 4, bias=1.0, alpha=0.001/9.0, beta=0.75) # 局部响应归一化,使用相同位置的前后的filter进行响应归一化操作 参数 ...
- 吴裕雄 python神经网络 花朵图片识别(10)
import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...
- 吴裕雄 python神经网络 花朵图片识别(9)
import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...
- 吴裕雄 python神经网络 水果图片识别(4)
# coding: utf-8 # In[1]:import osimport numpy as npfrom skimage import color, data, transform, io # ...
随机推荐
- vue自定义日历组件的实现
实现一个日期组件,如图: components.js代码如下: Vue.component('sc-calendar',{ template:'<div class="scCalend ...
- 葡萄城报表介绍:Web 报表
Web(World Wide Web)即全球广域网,也称为万维网,它是一种基于超文本和 HTTP 的.全球性的.动态交互的.跨平台的分布式图形信息系统.Web 报表是以 Web 作为信息展示平台,可以 ...
- Pig是轻类型的
总体来说Pig是“强类型”的,但Pig又允许用户不指定输入数据的类型,而可以自己根据用户的使用方式进行推测. 称Pig是“轻类型”的更合适,它确实对类型有严格的要求,但是如果没有明确定义类型也是可以处 ...
- ShowDoc
ShowDoc 摘自ShowDoc 每当接手一个他人开发好的模块或者项目,看着那些没有写注释的代码,我们都无比抓狂.文档呢?!文档呢?!Show me the doc !! 程序员都很希望别人能写技术 ...
- 短时傅里叶变换(Short Time Fourier Transform)原理及 Python 实现
原理 短时傅里叶变换(Short Time Fourier Transform, STFT) 是一个用于语音信号处理的通用工具.它定义了一个非常有用的时间和频率分布类, 其指定了任意信号随时间和频率变 ...
- Leetcode题解之Container With Most Water
1.题目描述 2.题目分析 首先,这个题可以使用暴力解法,时间复杂度是O(n^2),这个显然是最容易的做法,但是效率不够高,题目提供了一种解法,使用两个指针,一个从头向尾部,另外一个从尾部向头部,每一 ...
- leetCode题解之Jewels and Stones
1.题目描述 2.分析 使用HashTable 是解决这种的好方法. 3.代码 int numJewelsInStones(string J, string S) { map<char,int& ...
- Jmeter入门--安装教程
jmeter简介 Apache JMeter是Apache组织开发的基于Java的压力测试工具.用于对软件做压力测试,它最初被设计用于Web应用测试,但后来扩展到其他测试领域. 它可以用于测试静态和动 ...
- Common administrative commands in Red Hat Enterprise Linux 5, 6, and 7
https://access.redhat.com/articles/1189123 Common administrative commands in Red Hat Enterprise Linu ...
- 使用NSClassFromString
使用NSClassFromString 使用NSClassFromString可以直接从字符串初始化出对象出来,即使不引用头文件也没关系,以下是源码: AppDelegate.m // // AppD ...