问题:有n个东西,分给m个人,对于每个东西,每个人有喜欢与不喜欢两种态度:like[i][j],如果喜欢,那么他得到该东西时增加的喜悦度为k,否则为1,问是否存在一种分法,使得每个人都达到该人的最低喜悦度b[i]。

建模方法:

src->thing[i] cost = 0, cap = 1

kid[i]->dst : if b[i]/k != 0 : cost = k, cap = b[i]/k

        if b[i]%k!=0 : cost = b[i]%k, cap = 1

thing[i]->kid[j] : if like[j][i] : cost = 0, cap = 1

求出最大费用最大流:cost, flow

如果:cost+(n-flow) >= sum of b,则存在一种分法。
否则不存在。

————————————

收获:

  1、“该区分的区分,该不区分的不区分”,本题而言,对于所有喜欢的东西,如果它选了p个,那么选的p个对kid而言不区分,所以用流量表示个数,费用表示一个的贡献。

    对于kid不喜欢的东西,也是一类不区分的,只需要知道还差几个不区分的就行了。

  2、“最大化必须的”。。。。。。

bzoj 4322 东西分配问题的更多相关文章

  1. bzoj 1537: [POI2005]Aut- The Bus 线段树

    bzoj 1537: [POI2005]Aut- The Bus 先把坐标离散化 设f[i][j]表示从(1,1)走到(i,j)的最优解 这样直接dp::: f[i][j] = max{f[i-1][ ...

  2. BZOJ平推计划

    学习VFK大神推BZOJ,记录一下学习的东西 1004: burnside:一个置换群的等价计数=(每个置换的置换后等价情况数)/置换总数,每个置换的置换后等价情况数就是置换后没变的数 模意义下的除法 ...

  3. 【CodeVS 3123】高精度练习之超大整数乘法 &【BZOJ 2197】FFT快速傅立叶

    第一次写法法塔,,,感到威力无穷啊 看了一上午算导就当我看懂了?PS:要是机房里能有个清净的看书环境就好了 FFT主要是用了巧妙的复数单位根,复数单位根在复平面上的对称性使得快速傅立叶变换的时间复杂度 ...

  4. BZOJ 2448: 挖油

    Description [0,x]中全是1,其余全是0,每个点有一个权值,求最坏情况下得到x的最小权值. Sol DP+单调队列. 首先就是一个 \(O(n^3)\) 的DP. \(f[i][j]\) ...

  5. 【BZOJ】1901: Zju2112 Dynamic Rankings(区间第k小+树状数组套主席树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1901 首先还是吐槽时间,我在zoj交无限tle啊!!!!!!!!我一直以为是程序错了啊啊啊啊啊啊. ...

  6. 【BZOJ】2002: [Hnoi2010]Bounce 弹飞绵羊(lct)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2002 (BZOJ挂了,还没在BZOJ测,先是在wikioi测过了,,) 囧.在军训时立志要学lct! ...

  7. 【BZOJ】【1096】【ZJOI2007】仓库建设

    DP/斜率优化 Orz Hzwer 八中好像挂了……明天再提交吧…… UPD:2015-03-12 17:24:43 算了,毕竟是第一道题,还是仔细写一下斜率优化的过程吧.(部分引自Hzwer的题解) ...

  8. 【BZOJ】【TJOI2015】线性代数

    网络流/最小割/最大权闭合图 2333好开心,除了一开始把$500^2$算成25000……导致数组没开够RE了一发,可以算是一次AC~ 咳咳还是回归正题来说题解吧: 一拿到这道题,我就想:这是什么鬼玩 ...

  9. 【BZOJ】【3676】【APIO2014】回文串

    回文自动机/Manacher+SA 这道题可以用Manacher找出本质不同的回文串(令max增大的所有回文串),然后再用SA跑出来有多少相同. 还有一种做法就是回文自动机(Orz Hzwer)的裸题 ...

随机推荐

  1. Spring4笔记2--Spring的第一个程序

    Spring程序开发: 1. 导入jar包(略) 2. 创建Spring配置文件: Spring 配置文件的文件名可以随意,但 Spring 建议的名称为 applicationContext.xml ...

  2. Java Dom对XML的解析和修改操作

    与Dom4J和JDom对XML的操作类似,JDK提供的JavaDom解析器用起来一样方便,在解析XML方面Java DOM甚至更甚前两者一筹!其不足之处在于对XML的增删改比较繁琐,特开篇介绍... ...

  3. O_NONBLOCK与O_NDELAY有何不同?

    O_NONBLOCK和O_NDELAY所产生的结果都是使I/O变成非搁置模式(non-blocking),在读取不到数据或是写入缓冲区已满会马上return,而不会搁置程序动作,直到有数据或写入完成. ...

  4. Oracle11g用户、权限、角色、概要文件管理及审计

    第10章 安全管理 1 用户管理 2 权限管理 3 角色管理    : 4 概要文件管理 5 审计 操作系统:win7    Oracle安装目录:E盘 数据库名字:orcl  密码:123456 先 ...

  5. Spring框架的基本使用(IOC部分)

    Spring是一个轻量级的控制反转(IoC)和面向切面(AOP)的容器框架. Spring的好处 1.方便解耦,简化开发: Spring就是一个大工厂,专门负责生成Bean,可以将所有对象创建和依赖关 ...

  6. wpf设置某容器透明,而不应用到容器的子元素的方法

    以Border打比方: <Border.Background> <SolidColorBrush Opacity="0.4" Color="Black& ...

  7. python_Appium测试环境搭建

    Android环境搭建 移动端Appium环境部署比Web的selenium环境稍微复杂一些,如用python编写测试用例脚本或者开发测试框架以及UI自动化操作方法是一样的,基本是通用.因两者都是基于 ...

  8. 汇编看C函数调用

    http://blog.csdn.net/wishfly/article/details/5022008   简单的函数调用,通过简单的函数调用反汇编可以清楚了解如下 1.栈到底是什么,如何操纵栈的? ...

  9. (转载)solr实现满足指定距离范围条件的搜索

    配置schema.xml <?xml version="1.0" encoding="UTF-8" ?> <schema name=" ...

  10. WeifenLuo.WinFormsUI.Docking"的使用

    要用 WeifenLuo.WinFormsUI.Docking 首先要下载: WeifenLuo.WinFormsUI.Docking 在当前工程“解决方案 - 引用”中 >> 右击引用 ...