MT【126】点对个数两题之二【图论】
在平面上有\(n\) 个点$S={x_1,x_2\cdots,x_n}, $ 证明在这 \(n\) 个点中距离为 \(1\) 的点对数不超过 \(\dfrac{n}{4}+\dfrac{2}{2}n^{\frac{3}{2}}\).

证明:如果两点间距离为 1 则相连,所以要求距离为 1 的点对数就是图 G 中的边数.我们只需证明:边数\(|E|\le \dfrac{n}{4}+\dfrac{2}{2}n^{\frac{3}{2}}\)
证明:\(n\)个圆中两两交点总数不超过\(2C_n^2=n(n-1)\)个(包括重复).
用\(D_k,(k=1,2\cdots,n)\)表示以\(v_k\)为圆心,半径为 1 的圆,如果 \(v_k\)与\(v_i,v_j\)相邻,
则 $ v_k\in D_i\cap D_j $ , 因此 $ v_k $ 作为 $ D_1,D_2,\cdots,D_n $ 中两圆的交点恰好被计数 \(C_{d(v_k)}^2\) 次.
故\[\begin{align*}
n(n-1)&\ge\sum\limits_{k=1}^{n}{C_{d(v_k)}^2}
&\ge\dfrac{2}{n}|E|^2-E.\quad (\textbf{利用柯西和}2|E|=\sum\limits_{k=1}^{n}{d(v_k)})
\end{align*}\]
\(\therefore |E|\le \dfrac{n}{4}+\dfrac{2}{2}n^{\frac{3}{2}}\)
MT【126】点对个数两题之二【图论】的更多相关文章
- MT【127】点对个数两题之一【图论】
在平面上有\(n\) 个点$S={x_1,x_2\cdots,x_n}, $ 其中任意两个点之间的距离至少为 \(1\), 证明在这 \(n\) 个点中距离为 \(1\)的点对数不超过 \(3n\). ...
- MT【249】离心率两题
椭圆$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1,(a>b>0)$的一个焦点为$F$,过$F$的直线交椭圆于$A,B$两点,$M$是点$A$关于原点的对称点.若 ...
- Newtonsoft.Json C# Json序列化和反序列化工具的使用、类型方法大全 C# 算法题系列(二) 各位相加、整数反转、回文数、罗马数字转整数 C# 算法题系列(一) 两数之和、无重复字符的最长子串 DateTime Tips c#发送邮件,可发送多个附件 MVC图片上传详解
Newtonsoft.Json C# Json序列化和反序列化工具的使用.类型方法大全 Newtonsoft.Json Newtonsoft.Json 是.Net平台操作Json的工具,他的介绍就 ...
- 清橙A1206.小Z的袜子 && CF 86D(莫队两题)
清橙A1206.小Z的袜子 && CF 86D(莫队两题) 在网上看了一些别人写的关于莫队算法的介绍,我认为,莫队与其说是一种算法,不如说是一种思想,他通过先分块再排序来优化离线查询问 ...
- 最近切的两题SCC的tarjan POJ1236 POJ2186
两题都是水题,1236第一问求缩点后入度为0的点数,第二问即至少添加多少条边使全图强连通,属于经典做法,具体可以看白书 POJ2186即求缩点后出度为0的那个唯一的点所包含的点数(即SCC里有多少点) ...
- 2-SAT两题
看了大白书,学习了一下two-sat,很有意思的算法.题目就是大白书上的两题. 仅仅放一下代码作为以后的模板参考. #include <stdio.h> #include <algo ...
- COJ 0802 非传统题(二)
(颓了这么多天是时候干点正事了QAQ) 非传统题(二) 难度级别:B: 运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 还是很久很久以前,chx ...
- 算法题 19 二叉平衡树检查 牛客网 CC150
算法题 19 二叉平衡树检查 牛客网 CC150 实现一个函数,检查二叉树是否平衡,平衡的定义如下,对于树中的任意一个结点,其两颗子树的高度差不超过1. 给定指向树根结点的指针TreeNode* ro ...
- 暑假训练Round1——G: Hkhv的水题之二(字符串的最小表示)
Problem 1057: Hkhv的水题之二 Time Limits: 1000 MS Memory Limits: 65536 KB 64-bit interger IO format: ...
随机推荐
- WPF中的颜色转换
HEX16色转Bursh: Brush brush = new SolidColorBrush((Color)ColorConverter.ConvertFromString("#FFFFF ...
- Linux——CentOS7添加/删除用户和用户组(学习笔记)
1.新建用户 adduser testuser //新建testuser 用户 passwd testuser //给testuser 用户设置密码 2.建工作组 groupadd testgroup ...
- Robot的使用
在Java中,有一个类,非常神奇,它能帮助你完成某些任务,例如:打开笔记本/QQ等. 今天,我就说一下Robot类的使用方法吧,做一个打开记事本的小程序. 1.准备工作 JDK:不知道的别看了 开发工 ...
- Netty源码分析第4章(pipeline)---->第6节: 传播异常事件
Netty源码分析第四章: pipeline 第6节: 传播异常事件 讲完了inbound事件和outbound事件的传输流程, 这一小节剖析异常事件的传输流程 首先我们看一个最最简单的异常处理的场景 ...
- 如何快速搭建yum源
yum命令能够从指定的服务器自动下载rpm包并安装,它最强大的地方就是可以自动处理软件包的依赖关系,能够一次安装所有依赖的关系包.下面将通过虚拟机平台介绍两种快速搭建yum源的方法: 一.有网络的情况 ...
- 基于KVM的H3C云计算平台CAS运维经验
- 【机器学习】无监督学习Autoencoder和VAE
众所周知,机器学习的训练数据之所以非常昂贵,是因为需要大量人工标注数据. autoencoder可以输入数据和输出数据维度相同,这样测试数据匹配时和训练数据的输出端直接匹配,从而实现无监督训练的效果. ...
- 欢迎来怼--第二十九次Scrum会议
一.小组信息 队名:欢迎来怼 小组成员 队长:田继平 成员:李圆圆,葛美义,王伟东,姜珊,邵朔,阚博文 小组照片 二.开会信息 时间:2017/11/17 15:55~16:25,总计30min. 地 ...
- Daily Srum 10.28
这两天我们和其他两组进行了一次会议,主要讨论的是用什么框架来搭建这个平台.在线系统的那一组希望我们用nutch.solr.hbase这一套工具,这对于我们两组来说是一次挑战,毕竟我们一开始用的是关系型 ...
- java程序设计课程实验报告3
北京电子科技学院(BESTI) 实 验 报 告 课程:java程序设计 班级:1353 姓名:陈都 学号:20135328 成绩: 指导教师:娄 ...