UVA.10325 The Lottery (组合数学 容斥原理 二进制枚举)
UVA.10325 The Lottery (组合数学 容斥原理)
题意分析
首先给出一个数n,然后给出m个数字(m<=15),在[1-n]之间,依次删除给出m个数字的倍数,求最后在[1-n]之间还剩下多少个数字(包括1和n),已知m个数字中不会包含1(否则全部都被刷掉了)。
前置技能
1. 给出数字s,在[1-n]之间,s的倍数有n/s个。
2. 给出数字s1,和s2,在[1-n]之间,既是s1的倍数,又是s2的倍数,有n/lcm(s1,s2)个.
3. 给出数字s1,s2……sk(共k个数字),在[1-n]之间,既是s1也是s2……也是sk的倍数,有n/lcm(s1,s2,s3……sk)个。
4. 结论3在si两两互质的情况下,有n/(s1* s2 * s3…… * sk)个。
5. 容斥定理
用容斥定理能求出来,s1,s2,s3……sk的倍数在[1,n]中共有多少各个,然后用n减去即可。
或者利用奇增偶减的规则,一次性枚举完也可以。
代码总览
#include <cstdio>
#include <algorithm>
#include <cstring>
#define nmax 20
#define ll long long
using namespace std;
ll initnum[nmax];
ll n;
int m;
ll gcd(ll a, ll b)
{
if(!b) return a;
else return gcd(b, a%b);
}
ll lcm(ll a, ll b)
{
return a/gcd(a,b)*b;
}
int main()
{
// freopen("in.txt","r",stdin);
while(scanf("%lld %d",&n,&m) != EOF){
for(int i = 0 ;i<m;++i) scanf("%lld",&initnum[i]);
ll time = (1<<m);
ll ans = 0;
for(int i = 1; i<=time ;++i){
int index = 0;
ll tmpans = 1LL;
for(int j = 0; j<m;++j){
if( 1 & (i>>j)){
tmpans = lcm(tmpans,initnum[j]);
index++;
}
}
if(index & 1){//add
ans -= n / tmpans;
}else{//even
ans += n / tmpans;
}
}
printf("%lld\n",ans);
}
return 0;
}
UVA.10325 The Lottery (组合数学 容斥原理 二进制枚举)的更多相关文章
- UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举)
UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举) 题意分析 给出n*m的矩形格子,给出k个点,每个格子里面可以放一个点.现在要求格子的最外围一圈的每行每列,至少要放一个 ...
- HDU.1796 How many integers can you find ( 组合数学 容斥原理 二进制枚举)
HDU.1796 How many integers can you find ( 组合数学 容斥原理 二进制枚举) 题意分析 求在[1,n-1]中,m个整数的倍数共有多少个 与 UVA.10325 ...
- UVA 10325 The Lottery( 容斥原理)
The Sports Association of Bangladesh is in great problem with their latest lottery `Jodi laiga Jai'. ...
- UVa 818 切断圆环链(dfs+二进制枚举)
https://vjudge.net/problem/UVA-818 题意:有n个圆环,其中有一些已经扣在了一起.现在需要打开尽量少的圆环,使得所有圆环可以组成一条链,例如,有5个圆环,1-2,2-3 ...
- 容斥原理——uva 10325 The Lottery
首先推荐一篇介绍容斥原理很好的博客http://www.cppblog.com/vici/archive/2011/09/05/155103.html 题意:求1~n中不能被给定m个数中任意一个数整除 ...
- UVA 10325 - The Lottery(容斥)
以前做过的一个题,忘记/gcd了,看来需要把以前的东西看一下啊. #include <cstdio> #include <cstring> #include <iostr ...
- UVA 1151二进制枚举子集 + 最小生成树
题意:平面上有n个点(1<=N<=1000),你的任务是让所有n个点连通,为此, 你可以新建一些边,费用等于两个端点的欧几里得距离的平方.另外还有q(0<=q<=8)个套餐(数 ...
- 紫书 例题 11-3 UVa 1151 (有边集的最小生成树+二进制枚举子集)
标题指的边集是说这道题的套餐, 是由几条边构成的. 思路是先做一遍最小生成树排除边, 因为如果第一次做没有加入的边, 到后来新加入了很多权值为0的边,这些边肯定排在最前面,然后这条边的前面的那些边肯定 ...
- UVA - 1151 Buy or Build (买还是建)(并查集+二进制枚举子集)
题意:平面上有n个点(1<=n<=1000),你的任务是让所有n个点连通.可以新建边,费用等于两端点欧几里德距离的平方.也可以购买套餐(套餐中的点全部连通).问最小费用. 分析: 1.先将 ...
随机推荐
- 【Kubernetes】基于角色的权限控制:RBAC
Kubernetes中所有的API对象,都保存在Etcd里,对这些API对象的操作,一定都是通过访问kube-apiserver实现的,原因是需要APIServer来做授权工作. 在Kubernete ...
- 分布式消息队列RocketMQ与Kafka架构上的巨大差异
分布式消息服务 Kafka 是一个高吞吐.高可用的消息中间件服务,适用于构建实时数据管道.流式数据处理.第三方解耦.流量削峰去谷等场景,具有大规模.高可靠.高并发访问.可扩展且完全托管的特点,是分布式 ...
- [Windows][C#][.NET][WPF]基于ArcFace2.0+红外双目摄像头的活体检测
废话不多说 直接上图这个是demo中用到的双目摄像头,一个是红外的,一个是正常的rgb摄像头两个usb接口,在电脑上呈现两路摄像头通道程序检测RGB输出图像,当检测到有人脸时,用RGB人脸的位置到红外 ...
- 工具 | Sublime
Sublime 前言 妈耶..\(Sublime\)的界面真的是太好看啦哭哭.. 我永远喜欢Sublime! 强推Sublime... 正文 自从暑假用上的Ubontu 一开始用的是\(gedit\) ...
- mail邮件详解
基础命令学习目录首页 1.配置 vim /etc/mail.rc文件尾增加以下内容 set from=1968089885@qq.com smtp="smtp.qq.com"s ...
- 前端_JQuery
使用参考:http://jquery.cuishifeng.cn/ 目录 jQuery是什么 jQuery对象 寻找元素(选择器和筛选器) 选择器 表单属性选择器 筛选器 操作元素(属性.css.文档 ...
- OO学习第一阶段总结
前言 虽然之前接触过java,也写过一些1000行左右的程序.可以说面向对象的思想和java的一些基本语法对我来说是没有难度的,但是这学期的面向对象依然给了我一个下马威.这几次的作业每次都很让我头疼. ...
- 跟踪调试Linux内核的启动过程
跟踪调试Linux内核的启动过程---使用gdb 符钰婧 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/UST ...
- 预备作业02 : 体会做中学(Learning By Doing)
1.你有什么技能比大多人(超过班级90%以上)更好? 我认为我是一个比较爱摄影和绘画的人,虽然说说不上技术精湛,但还是能拿出手的. 2.针对这个技能的获取你有什么成功的经验? 接触摄影和绘画都是因为喜 ...
- 用java进行简单的万年历编写
import java.util.Scanner; public class PrintCalendarDemo1 { public static void main(String[] args) { ...